The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of

The EMBL accession numbers for the sequences reported in this paper are given in Methods.

Free

Abstract

The potential for natural genetic transformation among the seven genomovars (gvs) of was investigated. Of the 12 strains originating from a variety of environments, six strains (50%) from five gvs were competent for DNA uptake (Rif marker). The transformation frequencies varied over more than three orders of magnitude. With three highly transformable strains (ATCC 17587, ATCC 17641, JM300) from two gvs and all other strains as DNA donors, sexual isolation from other pseudomonad species (, ) and also from other gvs was observed (i.e. heterogamic transformation was reduced). For ATCC 17587 (gv 2) and ATCC 17641 (gv 8), heterogamic transformation was up to two and three orders of magnitude lower with other gv and the other species employed, respectively, than in homogamic transformations. Interestingly, whereas with ATCC 17587 and ATCC 17641 heterogamic transformation with donors of the same gv was as high as homogamic transformation, JM300 (gv 8) was sexually isolated from its nearest relative (ATCC 17641). Also, sexual isolation of JM300 from other gvs was most pronounced among the recipients tested, in some cases reaching the highest levels found with the other species as DNA donors (reduction of heterogamic transformation by 4000-fold). Results obtained here from nucleotide sequence analysis of part (422 nt) of the gene for the RNA polymerase β subunit () from various strains indicated that sexual isolation of ATCC 17641 increased with nucleotide sequence divergence. Implications of the observed great heterogeneity in transformability, competence levels and sexual isolation among strains are discussed with regard to the evolution of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3081
2000-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463081a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3081&mimeType=html&fmt=ahah

References

  1. Albritton W. L., Setlow J. K., Thomas M., Sottnek F., Steigerwalt A. G. 1984; Heterospecific transformation in the genus Haemophilus. Mol Gen Genet 193:358–363 [CrossRef]
    [Google Scholar]
  2. Bennasar A., Guasp C., Tesar M., Lalucat J. 1998; Genetic relationships among Pseudomonas stutzeri strains based on molecular typing methods. J Appl Microbiol 85:643–656 [CrossRef]
    [Google Scholar]
  3. Bertolla F., Frostegard A., Brito B., Nesme X., Simonet P. 1999; During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant-Microbe Interact 12:467–472 [CrossRef]
    [Google Scholar]
  4. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99
    [Google Scholar]
  5. Cohan F. M., Roberts M. S., King E. C. 1991; The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45:1383–1421
    [Google Scholar]
  6. Davis R. W., Botstein D., Roth J. R. 1980 Advanced Bacterial Genetics Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Dubnau D. 1999; DNA uptake in bacteria. Annu Rev Microbiol 53:217–244 [CrossRef]
    [Google Scholar]
  8. Duncan K. E., Ferguson N., Kimura K., Zhou X., Istock C. 1994; Fine-scale genetic and phenotypic structure in natural populations of Bacillus subtilis and Bacillus licheniformis: implications for bacterial evolution and speciation. Evolution 48:2002–2025 [CrossRef]
    [Google Scholar]
  9. Gallori E., Bazzicalupo M., Dal Canto L., Fani R., Nannipieri P., Vettori C., Stotzky G. 1994; Transformation of Bacillus subtilis by DNA bound on clay in non-sterile soil. FEMS Microbiol Ecol 15:119–126
    [Google Scholar]
  10. Ginard M., Lalucat J., Tuemmler B., Roemling U. 1997; Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol 47:132–143 [CrossRef]
    [Google Scholar]
  11. Go M. F., Kapur V., Graham D. Y., Musser J. M. 1996; Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J Bacteriol 178:3934–3938
    [Google Scholar]
  12. Grossman A. D. 1995; Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508 [CrossRef]
    [Google Scholar]
  13. Haubold B., Travisano M., Rainey P. B., Hudson R. R. 1998; Detecting linkage disequilibrium in bacterial populations. Genetics 150:1341–1348
    [Google Scholar]
  14. Hermanns U., Wackernagel W. 1977; The recBC enzyme of Escherichia coli K12: premature cessation of catalytic activities in vitro and reactivation by potassium ions. Eur J Biochem 76:425–432 [CrossRef]
    [Google Scholar]
  15. Istock C. A., Duncan K. E., Ferguson N., Zhou X. 1992; Sexuality in a natural population of bacteria – Bacillus subtilis challenges the clonal paradigm. Mol Ecol 1:95–103 [CrossRef]
    [Google Scholar]
  16. Lorenz M. G. 1998; Horizontal gene transfer among bacteria in soil by natural genetic transformation. In Microbial Interactions in Agriculture and Forestry pp. 19–44Edited by Subba Rao N S, Dommergues Y R. Enfield NH: Science Publishers;
    [Google Scholar]
  17. Lorenz M. G., Wackernagel W. 1990; Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154:380–385
    [Google Scholar]
  18. Lorenz M. G., Wackernagel W. 1991; High frequency of natural genetic transformation of Pseudomonas stutzeri in soil extract supplemented with a carbon/energy and phosphorus source. Appl Environ Microbiol 57:1246–1251
    [Google Scholar]
  19. Lorenz M. G., Wackernagel W. 1992; Stimulation of natural genetic transformation of Pseudomonas stutzeri in extracts of various soils by nitrogen or phosphorus limitation and influence of temperature and pH. Microb Releases 1:173–176
    [Google Scholar]
  20. Lorenz M. G., Wackernagel W. 1994; Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602
    [Google Scholar]
  21. Lorenz M. G., Aardema B. W., Wackernagel W. 1988; Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134:107–112
    [Google Scholar]
  22. Lorenz M. G., Meyer B., Wittstock M., Graupner S., Wackernagel W. 1998; Selective DNA uptake and DNA restriction as barriers to horizontal gene exchange by natural genetic transformation in Pseudomonas stutzeri JM300. In Horizontal Gene Transfer pp. 131–143Edited by Syvanen M., Kado C. I. London: Chapman & Hall;
    [Google Scholar]
  23. Majewski J., Cohan F. M. 1999; DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:1525–1533
    [Google Scholar]
  24. Marmur J. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  25. Maynard Smith J., Dowson C. G., Spratt B. G. 1991; Localized sex in bacteria. Nature 349:29–31 [CrossRef]
    [Google Scholar]
  26. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci USA 90:4384–4388 [CrossRef]
    [Google Scholar]
  27. M ü ller-Graf C. D. M., Whatmore A. M., King S. J.7 other authors 1999; Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease. Microbiology 145:3283–3293
    [Google Scholar]
  28. Nielsen K. M., van Weerelt M. D. M., Berg T. N., Bones A. M., Hagler A. N., van Elsas J. D. 1997; Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol 63:1945–1952
    [Google Scholar]
  29. Obradors N., Aguilar J. 1991; Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol 57:2383–2388
    [Google Scholar]
  30. Paget E., Simonet P. 1994; On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–118
    [Google Scholar]
  31. Paul J. H., Frischer M. E., Thurmond J. M. 1991; Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl Environ Microbiol 57:1509–1515
    [Google Scholar]
  32. Rainey P. B., Thompson I. P., Palleroni N. J. 1994; Genome and fatty acid analysis of Pseudomonas stutzeri. Int J Syst Bacteriol 44:54–61 [CrossRef]
    [Google Scholar]
  33. Roberts M. S., Cohan F. M. 1993; The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134:401–408
    [Google Scholar]
  34. Roberts M. S., Cohan F. M. 1995; Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49:1081–1094 [CrossRef]
    [Google Scholar]
  35. Robertson B. D., Meyer T. F. 1992; Genetic variation in pathogenic bacteria. Trends Genet 8:422–427 [CrossRef]
    [Google Scholar]
  36. Romanowski G., Lorenz M. G., Wackernagel W. 1993; Plasmid DNA in a groundwater aquifer microcosm – adsorption, DNase resistance and natural genetic transformation of Bacillus subtilis. Mol Ecol 2:171–181 [CrossRef]
    [Google Scholar]
  37. Rosselló R., Garcia-Valdes E., Lalucat J., Ursing J. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst Appl Microbiol 14:150–157 [CrossRef]
    [Google Scholar]
  38. Rosselló-Mora R. A., Lalucat J., Dott W., Kämpfer P. 1994; Biochemical and chemotaxonomic characterization of Pseudomonas stutzeri genomovars. J Appl Bacteriol 76:226–233 [CrossRef]
    [Google Scholar]
  39. Rosselló-Mora R. A., Lalucat J., Moore E. R. B. 1996; Strain JM300 represents a new genomovar within Pseudomonas stutzeri. Syst Appl Microbiol 19:596–599 [CrossRef]
    [Google Scholar]
  40. Rowji P., Gromkova R., Koornhof H. 1989; Genetic transformation in encapsulated clinical isolates of Haemophilus influenzae type b. J Gen Microbiol 135:2775–2782
    [Google Scholar]
  41. Sikorski J., Graupner S., Lorenz M. G., Wackernagel W. 1998; Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144:569–576 [CrossRef]
    [Google Scholar]
  42. Sikorski J., Rosselló-Mora R., Lorenz M. G. 1999; Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. Syst Appl Microbiol 22:393–402 [CrossRef]
    [Google Scholar]
  43. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  44. Stewart G. J., Sinigalliano C. D., Garko K. A. 1991; Binding of exogenous DNA to marine sediments and the effect of DNA/sediment binding on natural transformation of Pseudomonas stutzeri strain ZoBell in sediment columns. FEMS Microbiol Ecol 85:1–8 [CrossRef]
    [Google Scholar]
  45. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  46. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  47. Vermeiren H., Willems A., Schoofs G., de Mot R., Keijers V., Hai W., Vanderleyden J. 1999; The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22:215–224 [CrossRef]
    [Google Scholar]
  48. Wise M. G., Shimkets L. J., McArthur J. V. 1995; Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia. Appl Environ Microbiol 61:1791–1798
    [Google Scholar]
  49. Yother J., McDaniel L. S., Briles D. E. 1986; Transformation of encapsulated Streptococcus pneumoniae. J Bacteriol 168:1463–1465
    [Google Scholar]
  50. Zawadzki P., Roberts M. S., Cohan F. M. 1995; The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3081
Loading
/content/journal/micro/10.1099/00221287-146-12-3081
Loading

Data & Media loading...

Most cited Most Cited RSS feed