1887

Abstract

The gene encodes subtilisin, an extracellular proteolytic enzyme produced in stationary phase. The authors examined the stability of mRNA and leader– fusion mRNA. Both mRNAs were found to be unusually stable, with half-lives longer than 25 min, demonstrating that the leader contains a determinant for extreme mRNA stability. The half-lives were the same in growing and stationary-phase cells. This contrasts with the findings of O. Resnekov . (1990) [ 87, 8355–8359], which suggested a growth-phase-dependent mechanism for decay of mRNA. The discrepancy is explained by the techniques used. Substitution of two bases or deletion of 25 nucleotides in the leader led to a major difference in its predicted secondary structure and resulted in a fivefold reduction of the half-life of mRNA. The authors also determined the half-life of mRNA, which encodes α-amylase, another stationary-phase, excreted enzyme and found it to be around 5 min. This shows that extreme stability is not a general property of stationary-phase mRNAs encoding excreted enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3051
2000-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463051a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3051&mimeType=html&fmt=ahah

References

  1. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. . Mol Gen Genet 123:185–198 [CrossRef]
    [Google Scholar]
  2. Ayer D. E., Dynan W. S. 1988; Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol 8:2021–2033
    [Google Scholar]
  3. Bechhofer D. H. 1993; 5′ mRNA stabilizers. In Control of Messenger RNA Stability pp. 31–52Edited by Belasco J. G., Brawerman G. San Diego: Academic Press;
    [Google Scholar]
  4. Bechhofer D. H., Zen K. H. 1989; Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J Bacteriol 171:5803–5811
    [Google Scholar]
  5. Belasco J. G. 1993; mRNA degradation in prokaryotic cells: an overview. In Control of Messenger RNA Stability pp. 3–12Edited by Belasco J. G., Brawerman G. San Diego: Academic Press;
    [Google Scholar]
  6. Bremer H., Dennis P. P. 1996; Modulation of chemical composition and other parameters of the cell by growth stage. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 1553–1570Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue: a high efficiency plasmid transforming RecA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  8. Cohen S. N., McDowall K. J. 1997; RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23:1099–1106 [CrossRef]
    [Google Scholar]
  9. Dahl M. K., Meinhof C. G. 1994; A series of integrative plasmids for Bacillus subtilis containing unique cloning sites in all three open reading frames for translational lacZ fusions. Gene 145:151–152 [CrossRef]
    [Google Scholar]
  10. Emory S. A., Bouvet P., Belasco J. G. 1992; A 5′-terminal stem–loop structure can stabilize mRNA in Escherichia coli. Genes Dev 6:135–148 [CrossRef]
    [Google Scholar]
  11. Ferrari E., Henner D. J., Perego M., Hoch J. A. 1988; Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J Bacteriol 170:289–295
    [Google Scholar]
  12. Ferrari E., Jarnagin A. S., Schmidt B. F. 1993; Commercial production of extracellular enzymes. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 917–937Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Fortnagel P., Freese E. 1968; Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95:1431–1438
    [Google Scholar]
  14. Glatz E., Nilsson R. P., Rutberg L., Rutberg B. 1996; A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Mol Microbiol 19:319–328 [CrossRef]
    [Google Scholar]
  15. Glatz E., Persson M., Rutberg B. 1998; Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. . Microbiology 144:449–456 [CrossRef]
    [Google Scholar]
  16. Guerout-Fleury A. M., Frandsen N., Stragier P. 1996; Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61 [CrossRef]
    [Google Scholar]
  17. Holmberg C., Rutberg L. 1992; An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol 6:2931–2938 [CrossRef]
    [Google Scholar]
  18. Hue K. K., Cohen S. D., Bechhofer D. H. 1995; A polypurine sequence that acts as a 5′ mRNA stabilizer in Bacillus subtilis. J Bacteriol 177:3465–3471
    [Google Scholar]
  19. Jurgen B., Schweder T., Hecker M. 1998; The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol Gen Genet 258:538–545 [CrossRef]
    [Google Scholar]
  20. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  21. Lazazzera B. A., Palmer T., Quisel J., Grossman A. D. 1999; Cell density control of gene expression and development in Bacillus subtilis. In Cell–Cell Signaling in Bacteria pp. 27–46Edited by Dunny G. M., Winans S. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Liu M. Y., Romeo T. 1997; The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. . J Bacteriol 179:4639–4642
    [Google Scholar]
  23. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162 [CrossRef]
    [Google Scholar]
  24. Melin L., Rutberg L., von Gabain A. 1989; Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol 171:2110–2115
    [Google Scholar]
  25. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Nicholson W. L., Chambliss G. H. 1986; Molecular cloning of cis-acting regulatory alleles of the Bacillus subtilis amyR region by using gene conversion transformation. J Bacteriol 165:663–670
    [Google Scholar]
  27. Olmos J., Bolanos V., Causey S., Ferrari E., Bollvar F., Valle F. 1996; A functional Spo0A is required for maximal aprE expression in Bacillus subtilis. FEBS Lett 381:29–31 [CrossRef]
    [Google Scholar]
  28. Paesold G., Krause M. 1999; Analysis of rpoS mRNA in Salmonella dublin: identification of multiple transcripts with growth-phase-dependent variation in transcript stability. . J Bacteriol 181:1264–1268
    [Google Scholar]
  29. Park S. S., Wong S. L., Wang L. F., Doi R. H. 1989; Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J Bacteriol 171:2657–2665
    [Google Scholar]
  30. Persson M., Glatz E., Rutberg B. 2000; Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol 182:689–695 [CrossRef]
    [Google Scholar]
  31. Resnekov O., Rutberg L., von Gabain A. 1990; Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc Natl Acad Sci USA 87:8355–8359 [CrossRef]
    [Google Scholar]
  32. Resnekov O., Melin L., Carlsson P., Mannerlov M., von Gabain A., Hederstedt L. 1992; Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet 234:285–296 [CrossRef]
    [Google Scholar]
  33. Spickler C., Mackie G. A. 2000; Action of RNase II and polynucleotide phosphorylase against RNAs containing stem–loops of defined structure. J Bacteriol 182:2422–2427 [CrossRef]
    [Google Scholar]
  34. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205 [CrossRef]
    [Google Scholar]
  35. Tinoco I. Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41 [CrossRef]
    [Google Scholar]
  36. Vytvytska O., Jakobsen J. S., Balcunaite G., Andersen J. S., Baccarini M., von Gabain A. 1998; Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA 95:14118–14123 [CrossRef]
    [Google Scholar]
  37. Yamanaka K., Mitta M., Inouye M. 1999; Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181:6284–6291
    [Google Scholar]
  38. Zuker M. 1989; On finding of all suboptimal foldings of an RNA molecule. Science 244:48–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3051
Loading
/content/journal/micro/10.1099/00221287-146-12-3051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error