1887

Abstract

The gene encodes subtilisin, an extracellular proteolytic enzyme produced in stationary phase. The authors examined the stability of mRNA and leader– fusion mRNA. Both mRNAs were found to be unusually stable, with half-lives longer than 25 min, demonstrating that the leader contains a determinant for extreme mRNA stability. The half-lives were the same in growing and stationary-phase cells. This contrasts with the findings of O. Resnekov . (1990) [ 87, 8355–8359], which suggested a growth-phase-dependent mechanism for decay of mRNA. The discrepancy is explained by the techniques used. Substitution of two bases or deletion of 25 nucleotides in the leader led to a major difference in its predicted secondary structure and resulted in a fivefold reduction of the half-life of mRNA. The authors also determined the half-life of mRNA, which encodes α-amylase, another stationary-phase, excreted enzyme and found it to be around 5 min. This shows that extreme stability is not a general property of stationary-phase mRNAs encoding excreted enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3051
2000-12-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463051a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3051&mimeType=html&fmt=ahah

References

  1. Arwert F., Venema G.. 1973; Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. . Mol Gen Genet123:185–198[CrossRef]
    [Google Scholar]
  2. Ayer D. E., Dynan W. S.. 1988; Simian virus 40 major late promoter: a novel tripartite structure that includes intragenic sequences. Mol Cell Biol8:2021–2033
    [Google Scholar]
  3. Bechhofer D. H.. 1993; 5′ mRNA stabilizers. In Control of Messenger RNA Stability pp.31–52Edited by Belasco J. G., Brawerman G.. San Diego: Academic Press;
    [Google Scholar]
  4. Bechhofer D. H., Zen K. H.. 1989; Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J Bacteriol171:5803–5811
    [Google Scholar]
  5. Belasco J. G.. 1993; mRNA degradation in prokaryotic cells: an overview. In Control of Messenger RNA Stability pp.3–12Edited by Belasco J. G., Brawerman G.. San Diego: Academic Press;
    [Google Scholar]
  6. Bremer H., Dennis P. P.. 1996; Modulation of chemical composition and other parameters of the cell by growth stage. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.1553–1570Edited by Neidhardt F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M.. 1987; XL1-Blue: a high efficiency plasmid transforming RecA Escherichia coli strain with beta-galactosidase selection. Biotechniques5:376–378
    [Google Scholar]
  8. Cohen S. N., McDowall K. J.. 1997; RNase E: still a wonderfully mysterious enzyme. Mol Microbiol23:1099–1106[CrossRef]
    [Google Scholar]
  9. Dahl M. K., Meinhof C. G.. 1994; A series of integrative plasmids for Bacillus subtilis containing unique cloning sites in all three open reading frames for translational lacZ fusions. Gene145:151–152[CrossRef]
    [Google Scholar]
  10. Emory S. A., Bouvet P., Belasco J. G.. 1992; A 5′-terminal stem–loop structure can stabilize mRNA in Escherichia coli. Genes Dev6:135–148[CrossRef]
    [Google Scholar]
  11. Ferrari E., Henner D. J., Perego M., Hoch J. A.. 1988; Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J Bacteriol170:289–295
    [Google Scholar]
  12. Ferrari E., Jarnagin A. S., Schmidt B. F.. 1993; Commercial production of extracellular enzymes. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp.917–937Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Fortnagel P., Freese E.. 1968; Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol95:1431–1438
    [Google Scholar]
  14. Glatz E., Nilsson R. P., Rutberg L., Rutberg B.. 1996; A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Mol Microbiol19:319–328[CrossRef]
    [Google Scholar]
  15. Glatz E., Persson M., Rutberg B.. 1998; Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. . Microbiology144:449–456[CrossRef]
    [Google Scholar]
  16. Guerout-Fleury A. M., Frandsen N., Stragier P.. 1996; Plasmids for ectopic integration in Bacillus subtilis. Gene180:57–61[CrossRef]
    [Google Scholar]
  17. Holmberg C., Rutberg L.. 1992; An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol6:2931–2938[CrossRef]
    [Google Scholar]
  18. Hue K. K., Cohen S. D., Bechhofer D. H.. 1995; A polypurine sequence that acts as a 5′ mRNA stabilizer in Bacillus subtilis. J Bacteriol177:3465–3471
    [Google Scholar]
  19. Jurgen B., Schweder T., Hecker M.. 1998; The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol Gen Genet258:538–545[CrossRef]
    [Google Scholar]
  20. Kunst F., Ogasawara N., Moszer I..148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  21. Lazazzera B. A., Palmer T., Quisel J., Grossman A. D.. 1999; Cell density control of gene expression and development in Bacillus subtilis. In Cell–Cell Signaling in Bacteria pp.27–46Edited by Dunny G. M., Winans S. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Liu M. Y., Romeo T.. 1997; The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. . J Bacteriol179:4639–4642
    [Google Scholar]
  23. Mandel M., Higa A.. 1970; Calcium-dependent bacteriophage DNA infection. J Mol Biol53:159–162[CrossRef]
    [Google Scholar]
  24. Melin L., Rutberg L., von Gabain A.. 1989; Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol171:2110–2115
    [Google Scholar]
  25. Miller J.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Nicholson W. L., Chambliss G. H.. 1986; Molecular cloning of cis-acting regulatory alleles of the Bacillus subtilis amyR region by using gene conversion transformation. J Bacteriol165:663–670
    [Google Scholar]
  27. Olmos J., Bolanos V., Causey S., Ferrari E., Bollvar F., Valle F.. 1996; A functional Spo0A is required for maximal aprE expression in Bacillus subtilis. FEBS Lett381:29–31[CrossRef]
    [Google Scholar]
  28. Paesold G., Krause M.. 1999; Analysis of rpoS mRNA in Salmonella dublin: identification of multiple transcripts with growth-phase-dependent variation in transcript stability. . J Bacteriol181:1264–1268
    [Google Scholar]
  29. Park S. S., Wong S. L., Wang L. F., Doi R. H.. 1989; Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J Bacteriol171:2657–2665
    [Google Scholar]
  30. Persson M., Glatz E., Rutberg B.. 2000; Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol182:689–695[CrossRef]
    [Google Scholar]
  31. Resnekov O., Rutberg L., von Gabain A.. 1990; Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc Natl Acad Sci USA87:8355–8359[CrossRef]
    [Google Scholar]
  32. Resnekov O., Melin L., Carlsson P., Mannerlov M., von Gabain A., Hederstedt L.. 1992; Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet234:285–296[CrossRef]
    [Google Scholar]
  33. Spickler C., Mackie G. A.. 2000; Action of RNase II and polynucleotide phosphorylase against RNAs containing stem–loops of defined structure. J Bacteriol182:2422–2427[CrossRef]
    [Google Scholar]
  34. Thomas P. S.. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA77:5201–5205[CrossRef]
    [Google Scholar]
  35. Tinoco I. Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J.. 1973; Improved estimation of secondary structure in ribonucleic acids. Nat New Biol246:40–41[CrossRef]
    [Google Scholar]
  36. Vytvytska O., Jakobsen J. S., Balcunaite G., Andersen J. S., Baccarini M., von Gabain A.. 1998; Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci USA95:14118–14123[CrossRef]
    [Google Scholar]
  37. Yamanaka K., Mitta M., Inouye M.. 1999; Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol181:6284–6291
    [Google Scholar]
  38. Zuker M.. 1989; On finding of all suboptimal foldings of an RNA molecule. Science244:48–52[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3051
Loading
/content/journal/micro/10.1099/00221287-146-12-3051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error