1887

Abstract

Mutations conferring resistance to the antibiotic rifampicin (Rif) occur at specific sites within the β subunit of the prokaryotic RNA polymerase. Rif mutants of are frequently altered in the elongation and termination of transcription. Rif mutations were isolated in and their effects on transcription elongation factor NusG and Rho-dependent termination were investigated. RNase protection assay, Northern analysis and the expression of fusions in cells with an inducible NusG suggested the gene was autoregulated at the level of transcription. Rif mutations that changed residue Q469 to a basic residue (Q469K and Q469R) enhanced autoregulation of . A mutant expressing a truncated form of NusG, due to a nonsense mutation within the gene, was isolated on the basis of the loss of autoregulation. The mechanism of autoregulation was found to be independent both of transcription termination factor Rho and of the promoter transcribing Autoregulation required sequences within the 5′ coding sequence of the gene or immediately upstream. This is the first evidence from any bacterium that Rif RNA polymerases can display altered transcription regulation by NusG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3041
2000-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463041a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3041&mimeType=html&fmt=ahah

References

  1. Archambault J., Friesen J. D. 1993; Genetics of eukaryotic RNA polymerase-I, polymerase-II, and polymerase-III. Microbiol Rev 57:703–724
    [Google Scholar]
  2. Babitzke P. 1997; Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. Mol Microbiol 26:1–9 [CrossRef]
    [Google Scholar]
  3. Boor K. J., Duncan M. L., Price C. W. 1995; Genetic and transcriptional organisation of the region encoding the β subunit of Bacillus subtilis RNA polymerase. J Biol Chem 270:20329–20336 [CrossRef]
    [Google Scholar]
  4. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. F. K. 1969; Factor stimulating transcription by RNA polymerase. Nature 221:43–44 [CrossRef]
    [Google Scholar]
  5. Burns C. M., Richardson J. P. 1995; NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc Natl Acad Sci USA 92:4738–4742 [CrossRef]
    [Google Scholar]
  6. Burns C. M., Richardson L. V., Richardson J. P. 1998; Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J Mol Biol 278:307–316 [CrossRef]
    [Google Scholar]
  7. Burova E., Hung S. C., Sagitov V., Stitt B. L., Gottesman M. E. 1995; Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J Bacteriol 177:1388–1392
    [Google Scholar]
  8. Burova E., Hung S. C., Chen J., Court D. L., Zhou J.-G., Mglinitskiy G., Gottesman M. E. 1999; Escherichia coli nusG mutations that block transcription termination by coliphage HK022 Nun protein. Mol Microbiol 31:1783–1793 [CrossRef]
    [Google Scholar]
  9. Downing W. L., Sullivan S. L., Gottesman M. E., Dennis P. P. 1990; Sequence and transcriptional pattern of the essential Escherichia coli secE–nusG operon. J Bacteriol 172:1621–1627
    [Google Scholar]
  10. Grundy F. J., Henkin T. M. 1998; The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol 30:737–749 [CrossRef]
    [Google Scholar]
  11. Hartzog G. A., Wada T., Handa H., Winston F. 1998; Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev 12:357–369 [CrossRef]
    [Google Scholar]
  12. Harwood C. R., Cutting S. M. 1990 Molecular Biological Methods for Bacillus Chichester: Wiley;
    [Google Scholar]
  13. Henkin T. M. 2000; Transcription termination control in bacteria. Curr Opin Microbiol 3:149–153 [CrossRef]
    [Google Scholar]
  14. Igo M. M., Losick R. 1986; Regulation of a promoter that is utilised by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191:615–624 [CrossRef]
    [Google Scholar]
  15. Ingham C. J., Dennis J., Furneaux P. A. 1999; Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis. Mol Microbiol 31:651–663 [CrossRef]
    [Google Scholar]
  16. Jin D. J., Gross C. A. 1988; Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58 [CrossRef]
    [Google Scholar]
  17. Jin D. J., Gross C. A. 1991; RpoB8, a rifampicin-resistant termination-proficient RNA polymerase, has an increased K m for purine nucleotides during transcription elongation. J Biol Chem 266:14478–14485
    [Google Scholar]
  18. Jin D. J., Cashel M., Friedman D. I., Nakamaru Y., Walter W. A., Gross C. A. 1988a; Effects of rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. J Mol Biol 204:247–261 [CrossRef]
    [Google Scholar]
  19. Jin D. J., Walter W. A., Gross C. A. 1988b; Characterisation of the termination phenotypes of rifampicin-resistant mutants. . J Mol Biol 202:245–253 [CrossRef]
    [Google Scholar]
  20. Joeng S. M., Yoshikawa H., Takahashi H. 1993; Isolation and characterisation of the secE homologue gene of Bacillus subtilis. Mol Microbiol 10:133–142 [CrossRef]
    [Google Scholar]
  21. Korzheva N., Mustaev A., Koslov M., Malhotra A., Nikiforov V., Golfarb A., Darst S. A. 2000; A structural model of transcription elongation. Science 289:619–625 [CrossRef]
    [Google Scholar]
  22. Li J., Mason S. W., Greenblatt J. 1993; Elongation factor NusG interacts with termination factor Rho to regulate termination and antitermination of transcription. Genes Dev 7:161–172 [CrossRef]
    [Google Scholar]
  23. Magyar A., Zhang X., Kohn H., Widger W. R. 1996; The antibiotic bicyclomycin affects the secondary RNA binding site of Escherichia coli transcription termination factor Rho. J Biol Chem 271:25369–25374 [CrossRef]
    [Google Scholar]
  24. Puttikhunt C., Nihara T., Yamada Y. 1995; Cloning, nucleotide sequence and transcriptional analysis of the nusG gene of Streptomyces coelicolor A3(2). Mol Gen Genet 247:118–122 [CrossRef]
    [Google Scholar]
  25. Quirk P. G., Dunkley E. A., Lee P., Krulwich T. A. 1993; Identification of a putative Bacillus subtilis rho gene. J Bacteriol 175:647–654
    [Google Scholar]
  26. Severinov K., Soushko M., Goldfarb A., Nikiforov V. 1993; Rifampicin region revisited – new rifampicin-resistant and streptolydigin-resistant mutants in the β-subunit of Escherichia coli RNA polymerase. J Biol Chem 268:14820–14825
    [Google Scholar]
  27. Severinov K., Soushko M., Goldfarb A., Nikiforov V. 1994; Rifr mutations in the beginning of the Escherichia coli rpoB gene. Mol Gen Genet 244:120–126
    [Google Scholar]
  28. Severinov K., Mustaev A., Severinov E., Kozlov M., Darst S. A., Goldfarb A. 1995; The β-subunit rif-cluster-I is only angstroms away from the active-center of Escherichia coli RNA polymerase. J Biol Chem 270:29428–29432 [CrossRef]
    [Google Scholar]
  29. Sullivan S. L., Gottesman M. E. 1992; Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68:989–994 [CrossRef]
    [Google Scholar]
  30. Sullivan S. L., Ward D. F., Gottesman M. E. 1992; Effect of Escherichia coli NusG function on λN-mediated transcription antitermination. J Bacteriol 174:1339–1344
    [Google Scholar]
  31. Volker U., Engelmann S., Maul B., Riethdorf S., Volker A., Schmid R., Mach H., Hecker M. 1994; Analysis and induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752 [CrossRef]
    [Google Scholar]
  32. Wang B., Jones D. N. M., Kaine B. P., Weiss M. A. 1998; High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 6:555–569 [CrossRef]
    [Google Scholar]
  33. Wegrzyn A., Szalewska-Palasz A., Blaszczak A., Liberek K., Wegrzyn G. 1998; Differential inhibition of transcription from sigma-70 and sigma-32 dependent promoters by rifampicin. FEBS Lett 440:172–174 [CrossRef]
    [Google Scholar]
  34. Wehrli W., Knusel F., Schmid K., Staehelin M. 1968; Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci USA 61:667–673 [CrossRef]
    [Google Scholar]
  35. Xia M., Lunsford D., McDevitt D., Iordanescu S. 1999; A rapid method for the identification of essential genes in Staphylococcus aureus. . Plasmid 42:144–149 [CrossRef]
    [Google Scholar]
  36. Yang Y.-L., Polisky B. 1999; Allele-specific suppression of ColE1 high-copy number mutants by a rpoB mutation of Escherichia coli. Plasmid 41:55–62 [CrossRef]
    [Google Scholar]
  37. Zhang G., Campbell C. A., Minakhin L., Richter C. A., Severinov K., Darst S. A. 1999; Crystal structure of Thermus aquaticus core RNA polymerase at 3·3 Å resolution. Cell 98:811–818 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3041
Loading
/content/journal/micro/10.1099/00221287-146-12-3041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error