Lipid composition and taxonomy of [] : transfer to the genus Free

Abstract

Lipid components of [] NCIMB 9420 have been studied as an aid to taxonomic relocation of the organism. Non-polar lipids include the carotenoid nostoxanthin and the ubiquinone Q-10. The major fatty acids are -vaccenic acid [18:1(11)], hexadecanoic acid (16:0) and 2-hydroxy-tetradecanoic acid (2-OH-14:0), but 11-methyloctadec-11-enoic acid[11-Me-18:1(11)] is a significant minor component. The preponderant phospholipids are phosphatidylethanolamine and phosphatidylglycerol; minor lipids include bis(phosphatidyl)glycerol and an unidentified aminophospholipid. Several glycolipids are present, the major one being a glucuronosylceramide derived from sphinganine with amide-bound 2-OH-14:0. The lipid profile supports a proposal to reclassify the organism as

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-3007
2000-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1463007a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-3007&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst Appl Microbiol 20:522–539 [CrossRef]
    [Google Scholar]
  2. Abraham W.-R., Str ö mpl C., Meyer H.8 other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and. Caulobacter. Int J Syst Bacteriol 49:1053–1073 [CrossRef]
    [Google Scholar]
  3. Andreev L. V., Akimov V. N., Nikitin D. I. 1986; Peculiarities of fatty acid composition of the genus Caulobacter. Folia Microbiol 31:144–153 [CrossRef]
    [Google Scholar]
  4. Aveldano M. I., Horrocks L. A. 1983; Quantitative release of fatty acids from lipids by a simple hydrolysis procedure. J Lipid Res 24:1101–1105
    [Google Scholar]
  5. Barnes A., Galbraith L., Wilkinson S. G. 1989; The presence of 11-methyloctadec-11-enoic acid in the extractable lipids of Pseudomonas vesicularis. FEMS Microbiol Lett 59:101–106 [CrossRef]
    [Google Scholar]
  6. Blumenkrantz N., Asboe-Hansen G. 1975; New method for quantitative determination of uronic acids. Anal Biochem 54:484–489
    [Google Scholar]
  7. Christie W. W. 1982 Lipid Analysis, 2nd edn. Oxford: Pergamon;
    [Google Scholar]
  8. Christie W. W., Brechany E. Y., Holman R. T. 1987; Mass spectra of the picolinyl esters of isomeric mono- and dienoic fatty acids. Lipids 22:224–228 [CrossRef]
    [Google Scholar]
  9. Denner E. B. M., Kämpfer P., Busse H.-J., Moore E. R. B. 1999; Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol 49:1103–1109 [CrossRef]
    [Google Scholar]
  10. De Vos P., van Landschoot A., Segers P.9 other authors 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid:ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49 [CrossRef]
    [Google Scholar]
  11. Gerson T., Patel J. J. 1975; Neutral lipids and phospholipids of free-living and bacteroid forms of two strains of Rhizobium infective to Lotus pedunculatus. Appl Microbiol 30:193–198
    [Google Scholar]
  12. Gerson T., Patel J. J., Nixon N. L. 1975; Some unusual fatty acids of Rhizobium. Lipids 10:134–139 [CrossRef]
    [Google Scholar]
  13. Hanes C. S., Isherwood F. A. 1949; Separation of the phosphoric esters on the filter paper chromatogram. Nature 164:1107–1112 [CrossRef]
    [Google Scholar]
  14. Harvey D. J. 1982; Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids. Biomed Mass Spectrom 9:33–38 [CrossRef]
    [Google Scholar]
  15. Heumann W. 1960; Versuche zur Rekombination sternbildender Bakterien. Naturwissenschaften 47:330–331
    [Google Scholar]
  16. Jenkins C. L., Andrewes A. G., McQuade T. J., Starr M. P. 1979; The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4 [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of ‘Pseudomonas azotocolligans’ Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  18. Kawahara K., Seydel U., Matsuura M., Danbara H., Rietschel E. T., Zähringer U. 1991; Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110 [CrossRef]
    [Google Scholar]
  19. Kushwaha S. C., Kates M. 1984; Modification of phenol-sulfuric acid method for the estimation of sugars in lipids. Lipids 16:372–373
    [Google Scholar]
  20. London E., Feigenson G. W. 1979; Phosphorus NMR analysis of phospholipids in detergents. J Lipid Res 20:408–412
    [Google Scholar]
  21. MacKenzie S. L., Lapp M. S., Child J. J. 1979; Fatty acid composition of Rhizobium spp. Can J Microbiol 25:68–74 [CrossRef]
    [Google Scholar]
  22. Mizuno S., Hotta H., Yabuuchi E., Yano I. 1992; FAB/MS analysis of novel sphingoglycolipids in Sphingomonas species. Nippon Iyo Masu Supekutoru Gakkai Koenshu 17:179–182
    [Google Scholar]
  23. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and electrophoretic protein patterns. J Gen Microbiol 128:2945–2954
    [Google Scholar]
  24. Palleroni N. 1984; Genus Pseudomonas Migula 1893AL. In Bergey’s Manual of Systematic Bacteriology pp. 141–199Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238 [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int J Syst Bacteriol 44:308–314 [CrossRef]
    [Google Scholar]
  27. Takeuchi M., Sakane T., Yanagi M., Yasamato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341 [CrossRef]
    [Google Scholar]
  28. Van Bruggen A. H. C., Jochimsen K. N., Steinberger E. M., Segers P., Gillis M. 1993; Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int J Syst Bacteriol 43:1–7 [CrossRef]
    [Google Scholar]
  29. Wait R., Hudson M. J. 1985; The use of picolinyl esters for the characterization of microbial lipids: application to the unsaturated and cyclopropane fatty acids of Campylobacter species. Lett Appl Microbiol 1:95–99 [CrossRef]
    [Google Scholar]
  30. Wilkinson S. G., Galbraith L. 1979; Polar lipids of Pseudomonas vesicularis. Presence of a heptosyldiacylglycerol. Biochim Biophys Acta 575:244–254 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Tanimura E., Ohyama A., Yano I., Yamamoto A. 1979; Flavobacterium devorans ATCC 10829: a strain of Pseudomonas paucimobilis. J Gen Appl Microbiol 25:95–107 [CrossRef]
    [Google Scholar]
  32. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  33. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. 1999; Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al., 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 43:339–349 [CrossRef]
    [Google Scholar]
  34. Yamamoto A., Yano I., Masui M., Yabuuchi E. 1978; Isolation of a novel sphingoglycolipid containing glucuronic acid and 2-hydroxy fatty acid from Flavobacterium devorans ATCC 10829. J Biochem (Tokyo) 83:1213–1216
    [Google Scholar]
  35. Yano I., Tomiyasu I., Yabuuchi E. 1982; Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15:303–307 [CrossRef]
    [Google Scholar]
  36. Yu Ip C. C., Manam V., Hepler R., Hennessey J. P. 1992; Carbohydrate composition analysis of bacterial polysaccharides: optimized acid hydrolysis conditions for HPAEC-PAD analysis. Anal Biochem 201:343–349 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-3007
Loading
/content/journal/micro/10.1099/00221287-146-11-3007
Loading

Data & Media loading...

Most cited Most Cited RSS feed