The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation
The GenBank accession number for the sequence reported in this paper is AF155830.
A Rhizobium leguminosarum bv. viciae VF39 gene (glnD) encoding the uridylyltransferase/uridylyl-removing enzyme, which constitutes the sensory component of the nitrogen regulation (ntr) system, was identified, cloned and characterized. The deduced amino acid sequence contains the conserved active site motif of the nucleotidyltransferase superfamily and is highly homologous to the glnD gene products of other bacterial species. Downstream of the VF39 glnD resides an open reading frame with similarity to the Salmonellatyphimurium virulence factor gene mviN. Mutation of the glnD gene abolished the ability to use nitrate as a sole nitrogen source but not glutamine. In addition, neither uridylylation of PII nor induction of the ntr-regulated glnII gene (encoding glutamine synthetase II) under ammonium deficiency could be observed in mutant strains. This strongly suggests that glnD mutants harbour a permanently deuridylylated PII protein and as a consequence are unable to activate transcription from NtrC-dependent promoters. The glnD gene itself is expressed constitutively, irrespective of the nitrogen content of the medium. A functional GlnD protein is not essential for nitrogen fixation in R. leguminosarum bv. viciae, but in situ detection of glnD expression in the symbiotic and infection zone of the root nodule and quantitative measurements suggest that at least part of the ntr system functions in symbiosis. The results also indicate that the N-terminal part of GlnD is essential for the cell, as deletions in the 5′-region of the gene appear to be lethal and mutations possibly affecting the expression of the first half of the protein have a significant effect on the vitality of the mutant strain.
AdlerS. P., PurichD., StadtmanE. R.1975; Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem 250:6264–6272
ArcondeguyT., HuezI., FourmentJ., KahnD.1996; Symbiotic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti. FEMS Microbiol Lett 145:33–40[CrossRef]
BladergroenM. R., SpainkH. P.1998; Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis. Curr Opin Plant Biol 1:353–359[CrossRef]
de BruijnF. J., RossbachS., SchneiderM., RatetP., MessmerS., SzetoW. W., AusubelF. M., SchellJ.1989; Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol 171:1673–1682
ChiurazziM., IaccarinoM.1990; Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol Microbiol 4:1727–1735[CrossRef]
Colonna-RomanoS., RiccioA., GuidaM., DefezR., LambertiA., IaccarinoM., ArnoldW., PrieferU., PühlerA.1987; Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. Nucleic Acids Res 15:1951–1964[CrossRef]
Colonna-RomanoS., ArnoldW., SchlüterA., BoistardP., PühlerA., PrieferU. B.1990; An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet 223:138–147[CrossRef]
Colonna-RomanoS., PatriarcaE. J., AmarM., BernardP., MancoG., LambertiA., IaccarinoM., DefezR.1993; Uridylylation of the PII protein in Rhizobium leguminosarum. FEBS Lett 330:95–98[CrossRef]
ContrerasA., DrummondM., BaliA., BlancoG., GarciaE., BushG., KennedyC., MerrickM.1991; The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria. J Bacteriol 173:7741–7749
EdwardsR., MerrickM.1995; The role of uridylyltransferase in the control of Klebsiella pneumoniae nif gene regulation. Mol Gen Genet 247:189–198[CrossRef]
EnglemanE. G., FrancisS. H.1978; Cascade control of E. coli glutamine synthetase. II. Metabolite regulation of the enzymes in the cascade. Arch Biochem Biophys 191:602–612[CrossRef]
FilserD. M., MoscatelliC., LambertiA., VinczeE., GuidaM., SalzanoG., IaccarinoM.1986; Characterization and cloning of two Rhizobium leguminosarum genes coding for glutamine synthetase activities. J Gen Microbiol 132:2561–2569
van HeeswijkW., KuppingerO., MerrickM., KahnD.1992; Localization of the glnD gene on a revised map of the 200 kilobase region of the Escherichia coli chromosome. J Bacteriol 174:1702–1703
van HeeswijkW. C., RabenbergM., WesterhoffH. V., KahnD.1993; The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol Microbiol 9:443–457[CrossRef]
HooykaasP. J. J., ClapwijkP. M., NutiM. P., ShilperoortR. A., RoerschA.1977; Transfer of the Agrobacterium tumefaciens T1 plasmid to avirulent Agrobacteria and to Rhizobium ex-planta. J Gen Microbiol 98:477–484[CrossRef]
JiangP., PeliskaJ. A., NinfaA. J.1998a; Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2 . 7 . 7 . 59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37:12782–12794[CrossRef]
JiangP., PeliskaJ. A., NinfaA. J.1998b; Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of ntr gene transcription in Escherichia coli. Biochemistry 37:12795–12801[CrossRef]
JiangP., PeliskaJ. A., NinfaA. J.1998c; The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylation state. Biochemistry 37:12802–12810[CrossRef]
KimI. H., KwakS. J., KangJ., ParkS. C.1998; Transcriptional control of the glnD gene is not dependent on nitrogen availability in Escherichia coli. Mol Cells 8:483–490
MangumJ. H., MagniG., StadtmanE. R.1973; Regulation of the glutamine synthetase adenylylation and deadenylylation by the enzymatic uridylylation and deadenylylation of the PII regulatory protein. Arch Biochem Biophys 158:514–525[CrossRef]
O’ConnellK. P., RaffelS. J., SavilleB. J., HandelsmanJ.1998; Mutants of Rhizobium tropici strain CIAT899 that do not induce chlorosis in plants. Microbiology 144:2607–2617[CrossRef]
PatriarcaE. J., ChiurazziM., MancoG., RiccioA., LambertiA., De PaolisA., RossiM., DefezR., IaccarinoM.1992; Activation of the Rhizobium leguminosarum glnII gene by NtrC is dependent on upstream DNA sequences. Mol Gen Genet 234:337–345[CrossRef]
PatriarcaE. J., RiccioA., TateR., Colonna-RomanoS., IaccarinoM., DefezR.1993; The ntrBC genes of Rhizobium leguminosarum are part of a complex operon subject to negative regulation. Mol Microbiol 9:569–577[CrossRef]
PatriarcaE. J., TateR., FedorovaE., RiccioA., DefezR., IaccarinoM.1996; Down-regulation of the Rhizobium ntr system in the determinate nodule of Phaseolus vulgaris identifies a specific developmental zone. Mol Plant–Microbe Interact 9:243–251[CrossRef]
PrieferU. B.1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171:6161–6168
SchäferA., TauchA., JägerW., KalinowskiJ., ThierbachG., PühlerA.1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73[CrossRef]
SchlüterA., PatschkowskiT., QuandtJ., SelingerL. B., WeidnerS., KrämerM., ZhouL., HynesM. F., PrieferU. B.1997; Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant–Microbe Interact 10:605–616[CrossRef]
SimonR.1984; High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420[CrossRef]
SimonR., PrieferU., PühlerA.1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791[CrossRef]
SimonR., O’ConnellM., LabesM., PühlerA.1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118:640–659
UdvardiM. K., DayD. A.1997; Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523[CrossRef]
VieiraJ., MessingJ.1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268[CrossRef]
The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation