1887

Abstract

Dichloromethane (DCM) dehalogenase converts DCM to formaldehyde via the formation of glutathione metabolites and generates 2 mol HCl per mol DCM metabolized. Growth of expressing DCM dehalogenase was immediately and severely inhibited during conversion of 03 mM DCM. Intracellular pH (pH) rapidly decreased and chloride ions were steadily released into the medium. Bacterial growth resumed after completion of DCM conversion and cell viability was unaffected. At 06 mM DCM there was no recovery from growth inhibition in liquid culture due to the build-up of inhibitory concentrations of formaldehyde. DCM turnover stimulated potassium efflux from cells, which was suppressed by glucose. The potassium efflux, therefore, did not contribute to growth inhibition. It was concluded that initial growth inhibition results from lowering of the cytoplasmic pH, but severity of growth inhibition was greater than expected for the change in pH. Possible contributors to growth inhibition are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2967
2000-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462967a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2967&mimeType=html&fmt=ahah

References

  1. Bader, R. & Leisinger, T. ( 1994; ). Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase. J Bacteriol 176, 3466-3473.
    [Google Scholar]
  2. Bergmann, J. G. & Sanik, J. ( 1957; ). Determination of trace amounts of chlorine in naphtha. Anal Chem 29, 241-243.[CrossRef]
    [Google Scholar]
  3. Booth, I. R. ( 1985; ). Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49, 359-378.
    [Google Scholar]
  4. Dechert, S. (1995). Untersuchungen zum Wirkmechanismus der Mutagenität und Tumourigenität von Dichlormethan und seinen Metaboliten. PhD thesis, Universität Würzburg, Germany.
  5. Douglas, R. M., Roberts, J. A., Munro, A. W., Ritchie, G. Y., Lamb, A. J. & Booth, I. R. ( 1991; ). The distribution of homologues of the Escherichia coli KefC K+-efflux system in other bacterial species. J Gen Microbiol 137, 1999-2005.[CrossRef]
    [Google Scholar]
  6. Elmore, M. J., Lamb, A. J., Ritchie, G. Y., Douglas, R. M., Munro, A., Gajewska, A. & Booth, I. R. ( 1990; ). Activation of potassium efflux from Escherichia coli by glutathione metabolites. Mol Microbiol 4, 405-412.[CrossRef]
    [Google Scholar]
  7. Epstein, W. & Kim, B. S. ( 1971; ). Potassium transport loci in Escherichia coli K-12. J Bacteriol 108, 639-644.
    [Google Scholar]
  8. Ferguson, G. P. & Booth, I. R. ( 1998; ). Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180, 4314-4318.
    [Google Scholar]
  9. Ferguson, G. P., Munro, A. W., Douglas, R. M., McLaggan, D. & Booth, I. R. ( 1993; ). Activation of potassium channels during metabolite detoxification in Escherichia coli. Mol Microbiol 9, 1297-1303.[CrossRef]
    [Google Scholar]
  10. Ferguson, G. P., McLaggan, D. & Booth, I. R. ( 1995; ). Potassium channel activation by glutathione-S-conjugates in Escherichia coli: protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17, 1025-1033.[CrossRef]
    [Google Scholar]
  11. Ferguson, G. P., Nikolaev, Y., McLaggan, D., Maclean, M. & Booth, I. R. ( 1997; ). Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli: role of KefB and KefC potassium channels. J Bacteriol 179, 1007-1012.
    [Google Scholar]
  12. Ferguson, G. P., Tötemeyer, S., MacLean, M. J. & Booth, I. R. ( 1998; ). Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170, 209-219.[CrossRef]
    [Google Scholar]
  13. Ferguson, G. P., Battista, J. R., Lee, A. T. & Booth, I. R. ( 2000; ). Protection of the DNA during the exposure of Escherichia coli cells to a toxic metabolite: the role of the KefB and KefC potassium channels. Mol Microbiol 35, 113-122.[CrossRef]
    [Google Scholar]
  14. Gisi, D., Leisinger, T. & Vuilleumier, S. ( 1999; ). Enzyme-mediated dichloromethane toxicity and mutagenicity of bacterial and mammalian dichloromethane-active glutathione S-transferases. Arch Toxicol 73, 71-79.[CrossRef]
    [Google Scholar]
  15. Gutheil, W. G., Holmquist, B. & Vallee, B. L. ( 1992; ). Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31, 475-481.[CrossRef]
    [Google Scholar]
  16. Gutheil, W. G., Kasimoglu, E. & Nicholson, P. C. ( 1997; ). Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Haemophilus influenza. Biochem Biophys Res Commun 238, 693-696.[CrossRef]
    [Google Scholar]
  17. Hibberd, K. A., Berget, P. B., Warner, H. R. & Fuchs, J. A. ( 1978; ). Role of glutathione in reversing deleterious effects of a thiol-oxidising agent. J Bacteriol 133, 1150-1155.
    [Google Scholar]
  18. Holmgren, A. ( 1986; ). Thioredoxin and glutaredoxin systems: an overview. In Thioredoxin and Glutaredoxin Systems: Structure and Function, pp. 1-9. Edited by A. Holmgren, C.-I. Branden, H. Jörnvall & B.-M. Sjöberg. New York: Raven Press.
  19. Kayser, M. F., Stumpp, M. T. & Vuilleumier, S. (2000). DNA polymerase is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane. J Bacteriol 182, in press.
  20. Kroll, R. G. & Booth, I. R. ( 1983; ). The relationship between K+ transport, pH and pHi in Escherichia coli. Biochem J 216, 709-716.
    [Google Scholar]
  21. Kummerle, N., Feucht, H. H. & Kaulfers, P. M. ( 1996; ). Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene. Antimicrob Agents Chemother 40, 2276-2279.
    [Google Scholar]
  22. Leisinger, T. ( 1996; ). Biodegradation of chlorinated aliphatic compounds. Curr Opin Biotechnol 7, 295-300.[CrossRef]
    [Google Scholar]
  23. Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M. & Vuilleumier, S. ( 1994; ). Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5, 237-248.[CrossRef]
    [Google Scholar]
  24. McLaggan, D., Naprstek, J., Buurman, E. T. & Epstein, W. ( 1994; ). Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269, 1911-1917.
    [Google Scholar]
  25. Maduke, M., Pheasant, D. J. & Miller, C. ( 1999; ). High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 114, 713-722.[CrossRef]
    [Google Scholar]
  26. Meury, J. & Kepes, A. ( 1982; ). Glutathione and the gated potassium channels of Escherichia coli. EMBO J 1, 339-343.
    [Google Scholar]
  27. Ness, L. S., Ferguson, G. P., Nikolaev, Y. & Booth, I. R. ( 1997; ). Survival of Escherichia coli cells exposed to iodoacetate and chlorodinitrobenzene is independent of the glutathione gated K+ efflux systems KefB and KefC. Appl Environ Microbiol 63, 4083-4086.
    [Google Scholar]
  28. O’Donovan, M. R. & Mee, M. D. ( 1993; ). Formaldehyde is a bacterial mutagen in a range of Salmonella and Escherichia indicator strains. Mutagenesis 8, 577-581.[CrossRef]
    [Google Scholar]
  29. Oktyabrsky, O. N., Golyasnaya, N. V., Smirnova, G. V., Demakov, V. A., Posokhina, N. K. & Kholstova, T. A. ( 1993; ). Acidification of the cytoplasm reduces the mutagenic effect of N-methyl-N′-nitro-N-nitrosoguanidine. Mutat Res 293, 197-204.[CrossRef]
    [Google Scholar]
  30. Prinz, W. A., Åslund, F., Holmgren, A. & Beckwith, J. ( 1997; ). The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272, 15661-15667.[CrossRef]
    [Google Scholar]
  31. Reenstra, W. W., Patel, L., Rottenberg, H. & Kaback, H. R. ( 1980; ). Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli. Biochemistry 19, 1-8.[CrossRef]
    [Google Scholar]
  32. Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R. & Aguilar, O. M. ( 2000; ). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182, 1748-1753.[CrossRef]
    [Google Scholar]
  33. Roe, A. J., McLaggan, D., Davidson, I., O’Byrne, C. & Booth, I. R. ( 1998; ). Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180, 767-772.
    [Google Scholar]
  34. Thier, R., Taylor, J. B., Pemble, S. E., Humphreys, W. G., Persmark, M., Ketterer, B. & Guengerich, F. P. ( 1993; ). Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci U S A 90, 8576-8580.[CrossRef]
    [Google Scholar]
  35. Uotila, L. & Koivusalo, M. ( 1974; ). Formaldehyde dehydrogenase from human liver. J Biol Chem 249, 7653-7663.
    [Google Scholar]
  36. Uotila, L. & Koivusalo, M. ( 1989; ). Glutathione-dependent oxidoreductases: formaldehyde dehydrogenase. In Glutathione Chemical, Biochemical, and Medical Aspects, pp. 517-551. Edited by D. Dolphin, O. Avramovic & R. Poulson. New York: Wiley.
  37. Vuilleumier, S. ( 1997; ). Bacterial glutathione S-transferases: what are they good for? J Bacteriol 179, 1431-1441.
    [Google Scholar]
  38. Vuilleumier, S. & Leisinger, T. ( 1996; ). Protein engineering studies of dichloromethane dehalogenase/glutathione S-transferase from Methylophilus sp. strain DM11. Ser12 but not Tyr6 is required for enzyme activity. Eur J Biochem 239, 410-417.[CrossRef]
    [Google Scholar]
  39. Vuilleumier, S., Gisi, D., Stumpp, M. T. & Leisinger, T. ( 2000; ). Bacterial dichloromethane dehalogenases: A particular brand of glutathione S-transferases. Clin Chem Enzymol Commun 8, 367-378.
    [Google Scholar]
  40. Zablotowicz, R. M., Hoagland, R. E., Locke, M. A. & Hickey, W. J. ( 1995; ). Glutathione-S-transferase activity and metabolism of glutathione conjugates by rhizosphere bacteria. Appl Environ Microbiol 61, 1054-1060.
    [Google Scholar]
  41. Zheng, M., Åslund, F. & Storz, G. ( 1998; ). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718-1721.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2967
Loading
/content/journal/micro/10.1099/00221287-146-11-2967
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error