1887

Abstract

Expression of the operon is subject to catabolite repression by glucose. It was shown that a -acting catabolite-responsive element (CRE) sequence located 64 bp downstream of the transcription-start site mediated catabolite repression of the operon as it does for many other genes. Point mutations in the CRE sequence caused the loss of catabolite repression of the operon. Catabolite repression of expression was relieved in a mutant and was found to be dependent on both HPr and the HPr-like protein Crh. Furthermore, a transcription-repair coupling factor, Mfd, was also found to be involved in the glucose repression of expression. By the use of gel mobility shift analysis, a specific HPr-P dependent binding of CcpA to the CRE site was demonstrated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2901
2000-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462901a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2901&mimeType=html&fmt=ahah

References

  1. Chauvaux S., Paulsen I., Saier M. H. Jr 1998; CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J Bacteriol 180:491–497
    [Google Scholar]
  2. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H. Jr, Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolite genes of Bacillus subtilis. J Bacteriol 176:3336–3344
    [Google Scholar]
  3. Deutscher J., Kuster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef]
    [Google Scholar]
  4. Fujita Y., Miwa Y., Galinier A., Deutscher J. 1995; Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960 [CrossRef]
    [Google Scholar]
  5. Galinier A., Haiech J., Kilhoffer M., Jaquinod M., Stulke J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439–8444 [CrossRef]
    [Google Scholar]
  6. Galinier A., Kravanja M., Engelmann R., Hengstenberg W., Kilhoffer M. C., Deutscher J., Haiech J. 1998; New protein kinase and protein phosphatase families mediate signal transduction in bacterial carbon catabolite repression. Proc Natl Acad Sci USA 95:1823–1828 [CrossRef]
    [Google Scholar]
  7. Galinier A., Deutscher J., Martin-Verstraete I. 1999; Phosphorylation of either Crh or HPr allows binding of CcpA to the Bacillus subtilis xyn catabolite responsive element. J Mol Biol 286:307–314 [CrossRef]
    [Google Scholar]
  8. Gösseringer R., Kuster E. E., Galinier A., Deutscher J., Hillen W. 1997; Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266:665–676 [CrossRef]
    [Google Scholar]
  9. Hueck C. J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for gram-positive bacteria?. Mol Microbiol 15:395–401 [CrossRef]
    [Google Scholar]
  10. Jourlin-Castelli C., Mani N., Nakano M. M., Sonenshein A. L. 2000; CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295:865–878 [CrossRef]
    [Google Scholar]
  11. Kim J. H., Guvener Z., Cho J., Chung K., Chambliss G. 1995; Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol 177:5129–5134
    [Google Scholar]
  12. Kruger S., Gertz S., Hecker M. 1996; Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 17:2637–2644
    [Google Scholar]
  13. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  14. Martin-Verstraete I., Stukle J., Klier A., Rapoport G. 1995; Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177:6919–6927
    [Google Scholar]
  15. Martin-Verstraete I., Deutscher J., Galinier A. 1999; Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181:2966–2969
    [Google Scholar]
  16. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp. 352–355Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Miwa Y., Nagura K., Eguchi S., Fukuda H., Deutscher J., Fujita Y. 1997; Catabolite repression of the Bacillus subtilis gut operon exerted by two catabolite-responsive elements. Mol Microbiol 23:1203–1213 [CrossRef]
    [Google Scholar]
  18. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J.-J. 1996; Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217–230 [CrossRef]
    [Google Scholar]
  19. Saxild H. H., Andersen L. N., Hammer K. 1996; Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 178:424–434
    [Google Scholar]
  20. Schuch R., Garibian A., Saxild H. H., Piggot P. J., Nygaard P. 1999; Nucleosides as a carbon source in Bacillus subtilis: characterization of the drmpupG operon. Microbiology 145:2957–2966
    [Google Scholar]
  21. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  22. Wray L. V., Pettengill F., Fisher S. H. 1994; Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol 176:1894–1902
    [Google Scholar]
  23. Zalieckas J. M., Wray L. V., Fisher S. H. 1998a; Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J Bacteriol 180:6649–6654
    [Google Scholar]
  24. Zalieckas J. M., Wray L. V., Ferson A., Fisher S. H. 1998b; Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Mol Microbiol 27:1031–1038 [CrossRef]
    [Google Scholar]
  25. Zeng X., Saxild H. H. 1999; Identification and characterization of a DeoR specific operator sequence essential for induction of the dra-nupC-pdp operon expression in Bacillus subtilis. J Bacteriol 181:1719–1727
    [Google Scholar]
  26. Zeng X., Saxild H. H., Switzer R. L. 2000; Purification and characterization of the DeoR repressor of Bacillus subtilis. J Bacteriol 182:1916–1922 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2901
Loading
/content/journal/micro/10.1099/00221287-146-11-2901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error