1887

Abstract

Some cyanobacteria have been shown to exchange genetic information under laboratory conditions, but it has not been clear whether such genetic exchange occurs in the natural environment. To address this, a population genetic study was carried out on the filamentous diazotrophic cyanobacterium in the Baltic Sea. filaments were collected from 20 widely distributed sampling stations in the Baltic Sea during June and July 1998. Allele-specific PCR (AS-PCR) was used to characterize over 2000 filaments at three loci: a non-coding spacer between adjacent copies of the main structural gas vesicle gene (-IGS), the phycocyanin intergenic spacer (PC-IGS) and the rDNA internal transcribed spacer (rDNA-ITS). The three loci were all found to be polymorphic in the 1998 population: two alternative alleles were distinguished at the -IGS and PC-IGS loci, and three at the rDNA-ITS locus. All 12 possible combinations of alleles were found in the filaments studied, but some were much more common than others. The index of association ( ) for all possible pairwise combinations of isolates was found to differ significantly from zero, which implies that there is some linkage disequilibrium between loci. The values for 16 out of 20 individual sampling stations also differed significantly from zero: this shows that the observed linkage disequilibrium is not due to pooling data from genetically distinct subpopulations. Monte-Carlo simulations with random subsets of the data confirmed that some combinations showed significantly more linkage disequilibrium than expected by chance alone. It is concluded that genetic exchange occurs in the natural population, but the frequency is not high enough for the loci to be in linkage equilibrium. The distribution of the 12 genotypes across the Baltic Sea was found to be non-random, but did not correlate with temperature, salinity or major nutrient concentrations. A significant relationship was found between the gene diversity among filaments at each station and the distance of the station from the centre of the sampling area: possible reasons for this trend are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2865
2000-11-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462865a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2865&mimeType=html&fmt=ahah

References

  1. Ashelford K. E., Fry J. C., Day M. J., Hill K. E., Learner M. A., Marchesi J. R., Perkins C. D., Weightman A. J.. 1997; Using microcosms to study gene transfer in aquatic habitats. FEMS Microbiol Ecol23:81–94[CrossRef]
    [Google Scholar]
  2. Barker G. L. A., Hayes P. K., O’Mahony S. L., Vacharapiyasophon P., Walsby A. E.. 1999; A molecular and phenotypic analysis of Nodularia (cyanobacteria) from the Baltic Sea. J Phycol35:931–937[CrossRef]
    [Google Scholar]
  3. Barten R., Lill H.. 1995; DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC-6803. FEMS Microbiol Lett129:83–88
    [Google Scholar]
  4. Bolch C. J. S., Blackburn S. I., Neilan B. A., Grewe P. M.. 1996; Genetic characterisation of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking coding regions. J Phycol32:445–451[CrossRef]
    [Google Scholar]
  5. Bolch C. J. S., Orr P. T., Jones G. J., Blackburn S. I.. 1999; Genetic, morphological and toxicological variation among globally distributed strains of Nodularia (cyanobacteria). J Phycol35:339–355[CrossRef]
    [Google Scholar]
  6. Chiang G. G., Schaefer M. R., Grossman A. R.. 1992; Transformation of the filamentous cyanobacterium Fremyella diplosiphon by conjugation or electroporation. Plant Physiol Biochem30:315–325
    [Google Scholar]
  7. Cohan F. M.. 1994; Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol9:175–180[CrossRef]
    [Google Scholar]
  8. Eardly B. D., Materou L. A., Smith N. H., Johnson D. A., Rumbaugh M. D., Selander R. K.. 1990; Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl Environ Microbiol56:187–194
    [Google Scholar]
  9. Feizabadi M. M., Robertson I. D., Cousins D. V., Dawson D. J., Hampson D. J.. 1997; Use of multilocus enzyme electrophoresis to examine genetic relationships amongst isolates of Mycobacterium intracellulare and related species. Microbiology143:1461–1469[CrossRef]
    [Google Scholar]
  10. Gordon D. M., FitzGibbon F.. 1999; The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology145:2663–2671
    [Google Scholar]
  11. Hagen M. J., Hamrick J. L.. 1996; Population level processes in Rhizobium leguminosarum bv trifolii: the role of founder effects. Mol Ecol5:707–714[CrossRef]
    [Google Scholar]
  12. Haubold B., Rainey P. B.. 1996; Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol Ecol5:747–761[CrossRef]
    [Google Scholar]
  13. Hayes P. K., Barker G. L. A.. 1997; Genetic diversity within Baltic Sea populations of Nodularia (cyanobacteria). J Phycol33:919–923[CrossRef]
    [Google Scholar]
  14. Istock C. A., Duncan K. E., Ferguson N., Zhou X.. 1992; Sexuality in a natural population of bacteria – Bacillus subtilis challenges the clonal paradigm. Mol Ecol1:95–103[CrossRef]
    [Google Scholar]
  15. Komárek J., Hübel M., Hübel H., Šmarda J.. 1993; The Nodularia studies. 2. Taxonomy. Arch Hydrobiol Algol Stud68:1–25
    [Google Scholar]
  16. Lorenz M. G., Wackernagel W.. 1994; Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol Rev58:563–602
    [Google Scholar]
  17. Mantel N.. 1967; The detection of disease clustering and a generalised regression approach. Cancer Res27:209–220
    [Google Scholar]
  18. Maynard Smith J.. 1995; Do bacteria have population genetics?. In Population Genetics of BacteriaSociety for General Microbiology Symposium no. 52 pp.1–12Edited by Baumberg S., Young J. P. W., Wellington E. M. H., Saunders J. R.. Cambridge: Cambridge University Press;
    [Google Scholar]
  19. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G.. 1993; How clonal are bacteria?. Proc Natl Acad Sci USA90:4384–4388[CrossRef]
    [Google Scholar]
  20. Muropastor A. M., Kuritz T., Flores E., Herrero A., Wolk C. P.. 1994; Transfer of a genetic-marker from a megaplasmid of Anabaena sp. strain PCC-7120 to a megaplasmid of a different Anabaena strain. J Bacteriol176:1093–1098
    [Google Scholar]
  21. Nei M.. 1972; Genetic distance between populations. Am Nat106:283–292[CrossRef]
    [Google Scholar]
  22. Nei M.. 1987; Estimation of average heterozygosity and genetic distance from small numbers of individuals. Genetics89:583–590
    [Google Scholar]
  23. Neilan B. A., Jacobs D., Goodman A. E.. 1995; Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphism within the phycocyanin locus. Appl Environ Microbiol61:3875–3883
    [Google Scholar]
  24. Rudi K., Skulberg O. M., Jakobsen K. S.. 1998; Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol180:3453–3461
    [Google Scholar]
  25. Silva C., Eguiarte L. E., Souza V.. 1999; Reticulated and epidemic population genetic structure of Rhizobium etli biovar phaseoli in a traditionally managed locality in Mexico. Mol Ecol8:277–287[CrossRef]
    [Google Scholar]
  26. Singh D. T., Bagchi S. N., Modi D. R., Singh H. N.. 1987; Evidence for intergeneric transformation in filamentous, diazotrophic cyanobacteria. New Phytol107:347–356[CrossRef]
    [Google Scholar]
  27. Sode K., Tatara M., Takeyama H., Burgess J. G., Matsunaga T.. 1992; Conjugative gene-transfer in marine cyanobacteria Synechococcus sp, Synechocystis sp and Pseudanabaena sp. Appl Microbiol Biotechnol37:369–373[CrossRef]
    [Google Scholar]
  28. Spratt B. G., Smith N. H., Zhou J., O’Rourke M., Feil E.. 1995; The population genetics of the pathogenic Neisseria. In Population Genetics of BacteriaSociety for General Microbiology Symposium no. 52 pp.143–160Edited by Baumberg S., Young J. P. W., Wellington E. M. H., Saunders J. R.. Cambridge: Cambridge University Press;
    [Google Scholar]
  29. Stevens J. R., Tibayrenc M.. 1995; Detection of linkage disequilibrium in Trypanosoma brucei isolated from tsetse flies and characterised by RAPD analysis and isoenzymes. Parasitology110:181–186[CrossRef]
    [Google Scholar]
  30. Stevens J. R., Tibayrenc M.. 1996; Trypanosoma brucei s.l.: evolution, linkage and the clonality debate. Parasitology112:481–488[CrossRef]
    [Google Scholar]
  31. Tandeau de Marsac N., Mazel D., Bryant D. A., Houmard J.. 1985; Molecular-cloning and nucleotide-sequence of a developmentally regulated gene from the cyanobacterium Calothrix-PCC-7601 – a gas vesicle protein gene. Nucleic Acids Res13:7223–7236[CrossRef]
    [Google Scholar]
  32. Thiel T., Wolk C. P.. 1987; Conjugal transfer of plasmids to cyanobacteria. Methods Enzymol153:232–243
    [Google Scholar]
  33. Trott D. J., Oxberry S. L., Hampson D. J.. 1997; Evidence for Serpulina hyodysenteriae being recombinant with an epidemic population structure. Microbiology143:3357–3365[CrossRef]
    [Google Scholar]
  34. Walsby A. E., Hayes P. K., Boje R.. 1995; The gas vesicles, buoyancy and vertical distribution of cyanobacteria in the Baltic Sea. Eur J Phycol30:87–94[CrossRef]
    [Google Scholar]
  35. Whittam T. S.. 1995; Genetic population structure and pathogenicity in enteric bacteria. In Population Genetics of BacteriaSociety for General Microbiology Symposium no. 52 pp.217–245Edited by Baumberg S., Young J. P. W., Wellington E. M. H., Saunders J. R.. Cambridge: Cambridge University Press;
    [Google Scholar]
  36. Wilmotte A.. 1994; Molecular evolution and taxonomy of the cyanobacteria. In The Molecular Biology of Cyanobacteria pp.1–25Edited by Bryant D. A.. Dortrecht: Kluwer;
    [Google Scholar]
  37. Wilson W. H., Mann N. H.. 1997; Lysogenic and lytic viral production in marine microbial communities. Aquat Microb Ecol13:95–100[CrossRef]
    [Google Scholar]
  38. Wise M. G., McArthur J. V., Wheat C., Shimkets L. J.. 1996; Temporal variation in genetic diversity and structure of a lotic population of Burkholderia (Pseudomonas) cepacia. Appl Environ Microbiol62:1558–1562
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2865
Loading
/content/journal/micro/10.1099/00221287-146-11-2865
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error