Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes Free

Abstract

The GenBank accession numbers for the 23S rRNA sequences determined in this study are AF192136–AF192150.

rRNA genes are thought unlikely to be laterally transferred, because rRNA must coevolve with a large number of cellular components to form the highly sophisticated translation apparatus and perform protein synthesis. In this paper, the authors first hypothesized that lateral gene transfer (LGT) might occur to rRNA genes via replacement of gene segments encoding individual domains of rRNA: the ‘simplified complexity hypothesis’. Comparative sequence analyses of the 16S and 23S rRNA genes from a large number of actinomycete species frequently identified rRNA genes containing short segments with an abnormally high number of non-random base variations. These variations were nearly always characterized by complementing covariations of several paired bases within the stem of a hairpin. The nature of these base variations is not consistent with random mutations but satisfies well the predictions of the ‘simplified complexity hypothesis’. The most parsimonious explanation for this phenomenon is the lateral transfer of rRNA gene segments between different bacterial species. This mode of LGT may create mosaic rRNA genes and occur repeatedly in different regions of a gene, gradually destroying the evolutionary history recorded in the nucleotide sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2845
2000-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462845a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2845&mimeType=html&fmt=ahah

References

  1. Asai T., Zaporojets D., Squires C., Squires C. L. 1999; An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976 [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer J. J., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805 [CrossRef]
    [Google Scholar]
  3. Carranza S., Giribet G., Riberat C., Baguna J., Riutort M. 1996; Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol 13:824–832 [CrossRef]
    [Google Scholar]
  4. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  5. Doolittle W. F. 1999; Phylogenetic classification and universal tree. Science 284:2124–2128 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 46:159–173
    [Google Scholar]
  7. Green R., Samaha R. R., Noller H. F. 1997; Mutations at nucleotides G2251 and U2585 of 23S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol 266:40–50 [CrossRef]
    [Google Scholar]
  8. Groisman E. A., Saier M. H. Jr, Ochman H. 1992; Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 11:1309–1316
    [Google Scholar]
  9. Gunderson J. H., Sogin M. L., Wollet G., Hollingdale M., de la Cruz V. F., Waters A. P., McCutchan T. F. 1987; Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937 [CrossRef]
    [Google Scholar]
  10. Gutell R. G., Larsen N., Woese C. R. 1994; Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26
    [Google Scholar]
  11. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  12. Hillis D. M., Moritz C., Porter C. A., Baker R. J. 1990; Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310
    [Google Scholar]
  13. Jain R., Rivera M. C., Lake J. A. 1999; Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806 [CrossRef]
    [Google Scholar]
  14. Koch C., Kroppenstedt R. M., Rainey F. A., Stackebrandt E. 1996; 16S ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and Pilimelia and emendation of the family Micromonosporaceae. Int J Syst Bacteriol 46:765–768 [CrossRef]
    [Google Scholar]
  15. Koonin E. V., Mushegian A. R., Galperin M. Y., Walker D. R. 1999; Comparison of archaeal and bacterial genomes: computer analysis of protein sequences suggests a chimeric origin for the archaea. Mol Microbiol 25:619–637
    [Google Scholar]
  16. Lawrence J. G., Ochman H. 1997; Amelioration of bacterial genome: rates of change and exchange. J Mol Evol 44:383–397 [CrossRef]
    [Google Scholar]
  17. Mankin A. S. 1997; Pactamycin resistance mutations in functional sites of 16S rRNA. J Mol Biol 274:8–15 [CrossRef]
    [Google Scholar]
  18. Mylvaganam S., Dennis P. P. 1992; Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Halobacterium marismortui. Genetics 130:399–410
    [Google Scholar]
  19. Nelson K. E., Clayton R. A., Gill S. R.22 other authors 1999; Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329 [CrossRef]
    [Google Scholar]
  20. Niebel H., Dorsch M., Stackebrandt E. 1987; Cloning and expression in Escherichia coli of Proteus vulgaris genes for 16S ribosomal RNA. J Gen Microbiol 133:2401–2409
    [Google Scholar]
  21. Rheims H., Schumann P., Rohde M., Stackebrandt E. 1998; Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int J Syst Bacteriol 48:1119–1127 [CrossRef]
    [Google Scholar]
  22. Rivera M. C., Jain R., Moore J. E., Lake J. A. 1998; Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95:6239–6244 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sawyer S. 1989; Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538
    [Google Scholar]
  25. Smith J. M., Dowson C. G., Spratt B. G. 1991; Localized sex in bacteria. Nature 349:29–31 [CrossRef]
    [Google Scholar]
  26. Swofford D. L., Begle D. P. 1993 Phylogenetic Analysis Using Parsimony (Version 3.1), User’s Manual Champaign, IL: Smithsonian Institute Laboratory of Molecular Systematics;
    [Google Scholar]
  27. Syvanen M. 1994; Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet 28:237–261 [CrossRef]
    [Google Scholar]
  28. Ueda K., Seki T., Kudo T., Yoshida T., Kataoka M. 1999; Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181:78–82
    [Google Scholar]
  29. Van de Peer Y., Chapelle S., Wachter R. D. 1996; A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24:3381–3391 [CrossRef]
    [Google Scholar]
  30. Wang Y., Zhang Z. S., Ruan J. S. 1996; A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int J Syst Bacteriol 46:933–938 [CrossRef]
    [Google Scholar]
  31. Wang Y., Zhang Z. S., Ramanan N. 1997; The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol 179:3270–3276
    [Google Scholar]
  32. Ward-Rainey N., Rainey F. A., Stackebrandt E. 1996; The phylogenetic structure of the genus Streptosporangium. Syst Appl Microbiol 19:50–55 [CrossRef]
    [Google Scholar]
  33. Woese C. R. 1987; Bacterial evolution. Microbial Rev 51:221–271
    [Google Scholar]
  34. Woese C. R. 1998; The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859 [CrossRef]
    [Google Scholar]
  35. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579 [CrossRef]
    [Google Scholar]
  36. Yap W. H., Wang Y. 1999; Molecular cloning and comparative sequence analyses of rRNA operons in Streptomyces nodosus ATCC 14899. Gene 232:77–85 [CrossRef]
    [Google Scholar]
  37. Yap W. H., Zhang Z. S., Wang Y. 1999; Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209
    [Google Scholar]
  38. Zhang Z. S., Wang Y., Ruan J. S. 1998; Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411–422 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2845
Loading
/content/journal/micro/10.1099/00221287-146-11-2845
Loading

Data & Media loading...

Most cited Most Cited RSS feed