T228 phase variation and virulence are independent of RecA function Free

Abstract

The GenBank accession number for the sequence reported in this paper is U87924.

Colony pleomorphism, or phase variation, expressed by entomopathogenic bacteria belonging to the genus , is an important factor which determines the association of the bacteria with their nematode symbiont and the outcome of infection of susceptible insect larvae by the bacterium– nematode parasitic complex. The mechanism underlying phase variation is unknown. To determine whether RecA-mediated processes are linked to phase variation, the gene of was cloned and sequenced. When expressed in a -deleted strain of , the clone was able to complement the loss of RecA function. . chromosomal insertion mutants showed increased sensitivity to UV. Phase 1 forms did not show altered ability to convert to phase 2 and no significant differences in expression of other phase-dependent characteristics, including phospholipase C, haemolysin, protease, antibiotic activity and Congo Red binding, were noted. Furthermore, the LD of the insertion mutant for larvae was not significantly different from that of wild-type strains. From these data the authors conclude that is unlikely to be involved in phase variation, the expression of phase-dependent characteristics, or virulence factors involved in killing of susceptible larvae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2815
2000-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462815a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2815&mimeType=html&fmt=ahah

References

  1. Achtman M., Schwuchow S., Helmuth R., Morelli G., Manning P. A. 1978; Cell–cell interactions in conjugating Escherichia coli: con-mutants and stabilization of mating aggregates. Proc Natl Acad Sci USA 76:4837–4841
    [Google Scholar]
  2. Akhurst R. J. 1982a; Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065
    [Google Scholar]
  3. Akhurst R. J. 1982b; A Xenorhabdus sp. (Eubacteriales: Enterobacteriaceae) symbiotically associated with Steinernema kraussei. Rev Nematol 5:277–280
    [Google Scholar]
  4. Akhurst R. J. 1993; Bacterial symbionts of entomopathogenic nematodes – the power behind the throne. In Nematodes and the biologicalcontrol of insect pests pp. 127–135Edited by Bedding R., Akhurst R. J., Kaya H. Melbourne: CSIRO Publications;
    [Google Scholar]
  5. Akhurst R. J., Boemare N. E. 1990; Biology and taxonomy of Xenorhabdus. In Entomopathogenic Nematodes in Biological Control pp. 75–90Edited by Gaugler R., Kaya H. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
  6. Akhurst R. J., Dunphy G. B. 1993; Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts. In Parasites and Pathogens of Insects vol. 2 pp. 1–23Edited by Beckage N., Thompson S., Federici B. New York: Academic Press;
    [Google Scholar]
  7. Alexegev M. F. 1995; Three kanamycin resistance gene cassettes with different polylinkers. BioTechniques 18:52–53
    [Google Scholar]
  8. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  9. Ball T. K., Wasmuth C. R., Braunagel S. C., Benedik M. J. 1990; Expression of Serratia marcescens extracellular proteins requires recA. J Bacteriol 172:342–349
    [Google Scholar]
  10. Bewsey K. E., Johnson M. E., Huff P. 1991; Rapid isolation and purification of DNA from agarose gels: the phenol-freeze-fracture method. BioTechniques 10:724–725
    [Google Scholar]
  11. Blomfield I. C., Vaughn V., Rest R. F., Eisenstein B. I. 1991; Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457 [CrossRef]
    [Google Scholar]
  12. Boemare N., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761
    [Google Scholar]
  13. Boemare N., Thaler J. O., Lanois A. 1997; Simple bacteriological tests for phenotypic characterization of Xenorhabdus and Photorhabdus phase variants. Symbiosis 22:167–175
    [Google Scholar]
  14. Casadaban M. J., Cohen S. M. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 179:179–208
    [Google Scholar]
  15. Charette M. F., Henderson G. W., Kezdy F. J., Markovitz A. 1982; Molecular mechanism for dominance of a mutant allele of an ATP-dependent protease. J Mol Biol 162:503–510 [CrossRef]
    [Google Scholar]
  16. Clark A. J. 1973; Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7:67–86 [CrossRef]
    [Google Scholar]
  17. Cotteril S. M., Satterthwait A. C., Fersht A. R. 1982; RecA protein from Escherichia coli. A very rapid and simple purification procedure: binding of adenose 5′-triphosphate and adenosine 5′-diphosphate by the homogenous protein. Biochemistry 21:4332–4337 [CrossRef]
    [Google Scholar]
  18. Couche G. A., Gregson R. P. 1987; Protein inclusions produced by the entomopathogenic bacterium Xenorhabdus nematophilus subsp. nematophilus. J Bacteriol 169:5279–5288
    [Google Scholar]
  19. Couche G. A., Lehbach P. R., Forage R. G., Cooney D. R., Smith G. C., Gregson R. P. 1987; Occurrence of intracellular inclusions and plasmids in Xenorhabdus spp. J Gen Microbiol 133:967–973
    [Google Scholar]
  20. Donnenberg M. S., Kaper J. B. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli using a positive-selection suicide vector. Infect Immun 59:4310–4317
    [Google Scholar]
  21. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria – comparison of trees of recAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123
    [Google Scholar]
  22. Forst S., Nealson K. 1996; Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43
    [Google Scholar]
  23. Fyfe J. A. M., Davies J. K. 1990; Nucleotide sequence and expression in Escherichia coli of the recA gene of Neisseria gonorrhoeae. Gene 93:151–156 [CrossRef]
    [Google Scholar]
  24. Givaudan A., Lanois A., Boemare N. 1996; Cloning and nucleotide sequence of a flagellin encoding genetic locus from Xenorhabdus nematophilus: phase variation leads to differential transcription of two flagellar genes (fliCD). Gene 183:243–253 [CrossRef]
    [Google Scholar]
  25. Knight K. L., McEntee K. 1986; Nucleotide binding by a 24-residue peptide from the RecA protein of Escherichia coli. Proc Natl Acad Sci USA 83:9289–9293 [CrossRef]
    [Google Scholar]
  26. Koomey M., Gotschlich E. C., Robbins K., Bergstrom S., Swanson J. 1987; Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117:391–398
    [Google Scholar]
  27. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. 1994; Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465
    [Google Scholar]
  28. Luo N., Cella R. 1994; A reliable amplification technique with single-sided specificity for the isolation of 5′ gene regulating regions. Gene 140:59–62 [CrossRef]
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Manning P. A., Heuzenroeder M. W., Yeadon J., Leavesley D. I., Reeves P. R., Rowley D. 1986; Molecular cloning and expression in Escherichia coli K-12 of the O antigens of the Inaba and Ogawa serotypes of the Vibrio cholera O1 lipopolysaccharides and their potential for vaccine development. Infect Immun 53:272–277
    [Google Scholar]
  31. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  32. Müller R. V., Kokjohn T. A. 1990; General microbiology of recA: environmental and evolutionary significance. Annu Rev Microbiol 44:365–391 [CrossRef]
    [Google Scholar]
  33. Müller-Hill B., Crapo L., Gilbert W. 1968; Mutants that make more lac repressor. Proc Natl Acad Sci USA 59:1259–1264 [CrossRef]
    [Google Scholar]
  34. Nealson K. H., Schmidt T. M., Bleakley B. 1990; Physiology and biochemistry of Xenorhabdus. In Entomopathogenic Nematodes in Biological Control pp. 271–284Edited by Gaugler R., Kaya H. Boca Raton, FL: CRC Press;
    [Google Scholar]
  35. Ogawa T., Wabiko H., Tsurimoto T., Horii T., Masukata H., Ogawa H. 1978; Characterisitics of purified RecA protein and the regulation of its synthesis in vivo. Cold Spring Harbor Symp Quant Biol 43:909–915
    [Google Scholar]
  36. Phizicky E. M., Roberts J. W. 1981; Induction of SOS functions: regulation of proteolytic activity of E. coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell 25:259–267 [CrossRef]
    [Google Scholar]
  37. Pinyon R. A., Linedale E. C., Webster M. A., Thomas C. J. 1996; Tn5-Induced Xenorhabdus bovienii Lecithinase Mutants Demonstrate Reduced Virulence For Galleria mellonella Larvae. J Appl Bacteriol 80:411–417 [CrossRef]
    [Google Scholar]
  38. Poinar G. O., Thomas G. M. 1966; Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD136 (Neoaplectana sp.: Steinernematidae). Parasitology 56:385–390 [CrossRef]
    [Google Scholar]
  39. Radding C. M. 1982; Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16:405–437 [CrossRef]
    [Google Scholar]
  40. Reed K. 1990; Basic blotting – a quick fix. Today’s Life Sci 2:52–60
    [Google Scholar]
  41. Reed L. J., Muench H. 1938; A simple method of estimating fifty percentage end-points. Am J Hyg 27:493–497
    [Google Scholar]
  42. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  43. Southern E. M. 1975; Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  44. Stroeher U. H., Lech A. J., Manning P. A. 1994; Gene sequence of recA + and construction of recA mutants of Vibrio cholerae. Mol Gen Genet 244:295–302
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  46. Wang R. F., Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100:195–199 [CrossRef]
    [Google Scholar]
  47. Weinstock G. M., McEntee K., Lehman I. R. 1979; ATP-dependent renaturation of DNA catalyzed by the RecA protein of Escherichia coli. Proc Natl Acad Sci USA 76:126–130 [CrossRef]
    [Google Scholar]
  48. Yarranton G. T., Sedgwick S. G. 1982; Cloned truncated recA genes in E. coli. II. Effects of truncated gene products on in vivo RecA+ protein activity. Mol Gen Genet 185:99–104 [CrossRef]
    [Google Scholar]
  49. Zagaglia C., Casalino M., Colonna B., Conti C., Calconi A., Nicoletti M. 1991; Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun 59:792–799
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2815
Loading
/content/journal/micro/10.1099/00221287-146-11-2815
Loading

Data & Media loading...

Most cited Most Cited RSS feed