The GenBank accession number for the sequence reported in this paper is Y17900.
The cpsFGHIJKL genes from the cps cluster of Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of EPS were identified, cloned and nucleotide sequenced. The complete cps cluster is contained on an ∼11·2 kb chromosomal region which contains 12 ORFs, including the previously cloned cpsABCDE genes. Functions were assigned to some of the predicted gene products on the basis of homology to known sequences as follows: cpsK encodes a protein thought to be involved in the polymerization and export of the polysaccharide; cpsE, cpsF, cpsG, cpsH, cpsI and cpsJ encode putative sugar transferases. Two insertion sequences, IS1193 and ISS1, were identified within and flanking the 3′ end of the cps cluster respectively. Analysis of the expression of the cpsE gene in Escherichia coli demonstrated that it encodes a glucose-1-phosphate transferase; the enzyme which catalyses the first step in EPS biosynthesis in S. thermophilus NCFB 2393.
BourgoinF., GuédonG., PebayM., RousselY., PanisC., DecarisB.1996; Characterization of a mosaic ISS1 element and evidence for the recent horizontal transfer of two different types of ISS1 between Streptococcus thermophilus and Lactococcus lactis. Gene 178:15–23[CrossRef]
BourgoinF., PluvinetA., GintzB., DecarisB., GuédonG.1999; Are horizontal transfers involved in the evolution of Streptococcus thermophilus EPS synthesis loci?. Gene 233:151–161[CrossRef]
BubbW., UrashimaT., FujiwaraR., ShinnaiT., ArigaH.1997; Structural characterization of the exocellular polysaccharide produced by Streptococcus thermophilus OR901. Carbohydr Res 301:41–50[CrossRef]
CerningJ., BouillaneC., DesmazaudM. J., LandonM.1988; Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol Lett 10:255–260[CrossRef]
CoffeyT. J., EnrightM. C., DanielsM., MoronaJ. K., MoronaR., HryniewiczW., PatonJ. C., SprattB. G.1998; Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27:73–83[CrossRef]
DocoT., WieruszeskiJ., FournetB.1990; Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198:313–321[CrossRef]
EstremS., GaalT., RossW., GourseR.1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 95:9761–9766[CrossRef]
FarrowJ., CollinsM.1984; DNA base composition, DNA–DNA homology and long chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J Gen Microbiol 130:357–362
FoxA., MorganS., GilbartJ.1989; Preparation of alditol acetates and their analysis by gas chromatography (GC) and mass spectrometry (MS). In Analysis of Carbohydrates by GLC and MS pp. 88–115Edited byBiermanC., McGinnisG. Boca Raton, FL: CRC Press;
GriffinH., l’AnsonK., GassonM.1993; Rapid isolation of genes from bacterial lambda libraries by direct PCR screening. FEMS Microbiol Lett 112:49–53[CrossRef]
GriffinA., MorrisV., GassonM.1996; The cpsABCDE genes involved in polysaccharide production in Streptococcus salivarius ssp. thermophilus NCFB2393. Gene 183:23–27[CrossRef]
HeinrichsD., YethonJ., WhitfieldC.1998; Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232[CrossRef]
HigginsD., ThompsonJ., GibsonT.1994; clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680[CrossRef]
IelpiL., CousoR., DankertM.1993; Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500
KolkmanM. A., Van der ZeijstB. A., NuijtenP.1996; Functional analysis of glycosyl-transferases encoded by the capsular polysaccharide locus of Streptococcus pneumoniae serotype 14. J Biol Chem 272:19502–19508
KolkmanM. A., WakarchukW., NuijtenP., Van der ZeijstB. A.1997; Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol 26:197–208[CrossRef]
LémoineJ., ChiratF., WieruszeskiJ. M., StreckerG., FavreN., NeeserJ.1997; Structural characterization of the EPS produced by Streptococcus thermophilus Sfi39 and Sfi12. Appl Environ Microbiol 63:3512–3518
LewingtonJ., GreenwayS. D., SpillaneB. J.1987; Rapid small-scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol 5:51–53[CrossRef]
MoronaR., MacphersonD., Van den BoschL., CarlinN., ManningP.1995; Lipopolysaccharide with an altered O-antigen produced in E. coli K-12 harbouring mutated, cloned Shigella flexneri rfb genes. Mol Microbiol 18:209–223[CrossRef]
MoronaJ., MoronaR., PatonJ.1997; Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763[CrossRef]
MuellerP., KellerM., WengW. M., QuandtJ., ArnoldW., PuehlerA.1993; Genetic analysis of the Rhizobium melilotiexoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant-Microbe Interact 6:55–65[CrossRef]
MuñozR., MollerachM., LópezR., Garcı́aE.1997; Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25:79–92[CrossRef]
PradelE., ParkerC., SchnaitmanC.1992; Structures of the rfaB, rfaI, rfaJ and rfaS genes of E. coli K-12 and their roles in assembly of the lipopolysaccharide core. J Bacteriol 174:4736–4745
SauS., SunJ., LeeC.1997; Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J Bacteriol 179:1614–1621
StingeleF., NeeserJ., MolletB.1996; Identification and characterization of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi-6. J Bacteriol 178:1680–1690
StingeleF., VincentS., FaberE., NewellJ., KamerlingJ., NeeserJ.1999; Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol Microbiol 32:1287–1295[CrossRef]
Van KranenburgR., MaruggI., Van SwamN., WillemN., De VosW.1997; Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397[CrossRef]
Van KranenburgR., VosH., Van SwamI., KleerebezemM., De VosW.1999; Functional analysis of glycosyltransferase genes from L. lactis and other Gram-positive cocci: complementation, expression and diversity. J Bacteriol 181:6347–6353
WangL., LiuD., ReevesP.1996; C-terminal half of Salmonella enterica WbaP (RfbP): is the galactosyl-1-phosphate transferase domain catalyzing the first step of the O-antigen synthesis. J Bacteriol 178:2598–2604
WigginsC., MunroS.1998; Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95:7945–7950[CrossRef]
XiangS., HobbsM., ReevesP.1994; Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an IS-mediated recombinational event between group E and D1 strains. J Bacteriol 176:4357–4365