1887

Abstract

The GenBank accession number for the sequence reported in this paper is Y17900.

The genes from the cluster of NCFB 2393 involved in the biosynthesis of EPS were identified, cloned and nucleotide sequenced. The complete cluster is contained on an ∼112 kb chromosomal region which contains 12 ORFs, including the previously cloned genes. Functions were assigned to some of the predicted gene products on the basis of homology to known sequences as follows: encodes a protein thought to be involved in the polymerization and export of the polysaccharide; , , , , and encode putative sugar transferases. Two insertion sequences, IS and IS, were identified within and flanking the 3′ end of the cluster respectively. Analysis of the expression of the gene in demonstrated that it encodes a glucose-1-phosphate transferase; the enzyme which catalyses the first step in EPS biosynthesis in NCFB 2393.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2793
2000-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462793a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2793&mimeType=html&fmt=ahah

References

  1. Altshchul S. F., Gish W., Miller W., Myers E., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Becker A., Rüberg S., Küster H., Roxlau A., Keller M., Ivashina T., Cheng T., Walker G., Pühler A. 1997; The 32-kb exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan. J Bacteriol 179:1375–1384
    [Google Scholar]
  3. Bourgoin F., Guédon G., Pebay M., Roussel Y., Panis C., Decaris B. 1996; Characterization of a mosaic ISS1 element and evidence for the recent horizontal transfer of two different types of ISS1 between Streptococcus thermophilus and Lactococcus lactis. Gene 178:15–23 [CrossRef]
    [Google Scholar]
  4. Bourgoin F., Guédon G., Gintz B., Decaris B. 1998; Characterization of a novel insertion sequence, IS1194, in Streptococcus thermophilus. Plasmid 40:44–49 [CrossRef]
    [Google Scholar]
  5. Bourgoin F., Pluvinet A., Gintz B., Decaris B., Guédon G. 1999; Are horizontal transfers involved in the evolution of Streptococcus thermophilus EPS synthesis loci?. Gene 233:151–161 [CrossRef]
    [Google Scholar]
  6. Bubb W., Urashima T., Fujiwara R., Shinnai T., Ariga H. 1997; Structural characterization of the exocellular polysaccharide produced by Streptococcus thermophilus OR901. Carbohydr Res 301:41–50 [CrossRef]
    [Google Scholar]
  7. Cerning J., Bouillane C., Desmazaud M. J., Landon M. 1988; Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol Lett 10:255–260 [CrossRef]
    [Google Scholar]
  8. Coffey T. J., Enright M. C., Daniels M., Morona J. K., Morona R., Hryniewicz W., Paton J. C., Spratt B. G. 1998; Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27:73–83 [CrossRef]
    [Google Scholar]
  9. Doco T., Wieruszeski J., Fournet B. 1990; Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198:313–321 [CrossRef]
    [Google Scholar]
  10. Dower W., Miller J., Ragsdale C. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  11. Duwat P., Cochu A., Ehrlich D., Gruss A. 1997; Characterization of L. lactis UV-sensitivity mutants obtained by ISS1 transposition. J Bacteriol 179:4473–4479
    [Google Scholar]
  12. Estrem S., Gaal T., Ross W., Gourse R. 1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 95:9761–9766 [CrossRef]
    [Google Scholar]
  13. Farrow J., Collins M. 1984; DNA base composition, DNA–DNA homology and long chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J Gen Microbiol 130:357–362
    [Google Scholar]
  14. Fox A., Morgan S., Gilbart J. 1989; Preparation of alditol acetates and their analysis by gas chromatography (GC) and mass spectrometry (MS). In Analysis of Carbohydrates by GLC and MS pp. 88–115Edited by Bierman C., McGinnis G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. Gibson T. 1984 Studies on the Epstein-Barr virus genome PhD thesis University of Cambridge;
    [Google Scholar]
  16. Griffin H., l’Anson K., Gasson M. 1993; Rapid isolation of genes from bacterial lambda libraries by direct PCR screening. FEMS Microbiol Lett 112:49–53 [CrossRef]
    [Google Scholar]
  17. Griffin A., Morris V., Gasson M. 1996; The cpsABCDE genes involved in polysaccharide production in Streptococcus salivarius ssp. thermophilus NCFB2393. Gene 183:23–27 [CrossRef]
    [Google Scholar]
  18. Heinrichs D., Yethon J., Whitfield C. 1998; Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232 [CrossRef]
    [Google Scholar]
  19. Higgins D., Thompson J., Gibson T. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  20. Ielpi L., Couso R., Dankert M. 1993; Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500
    [Google Scholar]
  21. Kolkman M. A., Van der Zeijst B. A., Nuijten P. 1996; Functional analysis of glycosyl-transferases encoded by the capsular polysaccharide locus of Streptococcus pneumoniae serotype 14. J Biol Chem 272:19502–19508
    [Google Scholar]
  22. Kolkman M. A., Wakarchuk W., Nuijten P., Van der Zeijst B. A. 1997; Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol 26:197–208 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  24. Lémoine J., Chirat F., Wieruszeski J. M., Strecker G., Favre N., Neeser J. 1997; Structural characterization of the EPS produced by Streptococcus thermophilus Sfi39 and Sfi12. Appl Environ Microbiol 63:3512–3518
    [Google Scholar]
  25. Lewington J., Greenway S. D., Spillane B. J. 1987; Rapid small-scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol 5:51–53 [CrossRef]
    [Google Scholar]
  26. Low D., Ahlgren J., Horne D., McMahon D., Oberg C., Broadbent J. 1998; Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol 64:2147–2151
    [Google Scholar]
  27. Ludowieg J., Benmaman J. 1967; Colorimetric differentiation of hexosamines. Anal Biochem 19:80–88 [CrossRef]
    [Google Scholar]
  28. Mercenier A., Lemoin Y. 1989; Genetics of Streptococcus thermophilus: a review. J Dairy Sci 72:3444–3454 [CrossRef]
    [Google Scholar]
  29. Morona R., Macpherson D., Van den Bosch L., Carlin N., Manning P. 1995; Lipopolysaccharide with an altered O-antigen produced in E. coli K-12 harbouring mutated, cloned Shigella flexneri rfb genes. Mol Microbiol 18:209–223 [CrossRef]
    [Google Scholar]
  30. Morona J., Morona R., Paton J. 1997; Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763 [CrossRef]
    [Google Scholar]
  31. Morona J., Morona R., Paton J. 1999; Comparative genetics of capsular polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J Bacteriol 181:5355–5364
    [Google Scholar]
  32. Mueller P., Keller M., Weng W. M., Quandt J., Arnold W., Puehler A. 1993; Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant-Microbe Interact 6:55–65 [CrossRef]
    [Google Scholar]
  33. Muñoz R., Mollerach M., López R., Garcı́a E. 1997; Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25:79–92 [CrossRef]
    [Google Scholar]
  34. Pearson W., Wood T., Zhang Z., Miller W. 1997; Comparison of DNA sequences with protein sequences. Genomics 46:24–36 [CrossRef]
    [Google Scholar]
  35. Peterson G. 1977; A simplification of the protein assay method of Lowry et al., which is more generally applicable. Anal Biochem 83:346–356 [CrossRef]
    [Google Scholar]
  36. Pradel E., Parker C., Schnaitman C. 1992; Structures of the rfaB, rfaI, rfaJ and rfaS genes of E. coli K-12 and their roles in assembly of the lipopolysaccharide core. J Bacteriol 174:4736–4745
    [Google Scholar]
  37. Sambrook J., Fritsch F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sau S., Sun J., Lee C. 1997; Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J Bacteriol 179:1614–1621
    [Google Scholar]
  39. Saxena I., Brown M., Fevre M., Geremia R., Henrissat B. 1995; Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424
    [Google Scholar]
  40. Stingele F., Neeser J., Mollet B. 1996; Identification and characterization of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi-6. J Bacteriol 178:1680–1690
    [Google Scholar]
  41. Stingele F., Vincent S., Faber E., Newell J., Kamerling J., Neeser J. 1999; Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol Microbiol 32:1287–1295 [CrossRef]
    [Google Scholar]
  42. Sutherland I. 1996; Extracellular polysaccharides. In Biotechnology vol. 6, 2nd edn. pp. 615–652Edited by Roehr M., Rhem J., Reed G. Weinhem: VCH;
    [Google Scholar]
  43. Terzaghi B., Sandine W. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 29:807–813
    [Google Scholar]
  44. Van Kranenburg R., Marugg I., Van Swam N., Willem N., De Vos W. 1997; Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397 [CrossRef]
    [Google Scholar]
  45. Van Kranenburg R., Vos H., Van Swam I., Kleerebezem M., De Vos W. 1999; Functional analysis of glycosyltransferase genes from L. lactis and other Gram-positive cocci: complementation, expression and diversity. J Bacteriol 181:6347–6353
    [Google Scholar]
  46. Wang L., Liu D., Reeves P. 1996; C-terminal half of Salmonella enterica WbaP (RfbP): is the galactosyl-1-phosphate transferase domain catalyzing the first step of the O-antigen synthesis. J Bacteriol 178:2598–2604
    [Google Scholar]
  47. Whitfield C. 1995; Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol 178:178–185
    [Google Scholar]
  48. Wiggins C., Munro S. 1998; Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95:7945–7950 [CrossRef]
    [Google Scholar]
  49. Xiang S., Hobbs M., Reeves P. 1994; Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an IS-mediated recombinational event between group E and D1 strains. J Bacteriol 176:4357–4365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2793
Loading
/content/journal/micro/10.1099/00221287-146-11-2793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error