1887

Abstract

The virulence and drug susceptibility of a clinical isolate of which showed smooth transparent (ST) and smooth opaque (SO) colonies were studied. While ST cells multiplied intracellularly and maintained their coccobacillary form in a human macrophage model of infection, SO cells formed long filaments and completely destroyed the phagocytes. In BALB/c mice, the ST variant, but not the SO variant, grew efficiently in the spleen, liver and lung. The ST variant was usually more resistant than the SO variant to drugs, with MIC values for clarithromycin (CLA), azithromycin (AZI), ciprofloxacin, sparfloxacin, amikacin, clofazimine, ethambutol and isoniazid being higher than those of the SO variant. In beige mice infected with the more highly virulent variant ST, CLA and AZI were the most active drugs in terms of viable count reduction in organs and mutant selection. Together, these observations indicate that the ST variant of is a virulent form that can be efficiently inhibited by CLA and AZI.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2733
2000-11-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462733a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2733&mimeType=html&fmt=ahah

References

  1. Beaman L., Beaman B. L.. 1993; Interactions of Nocardia asteroides with murine glia cells in culture. Infect Immun61:343–347
    [Google Scholar]
  2. Bonomo R. A., Briggs J. M., Gross W., Hassan M., Graham R. C., Butler W. R., Salata R. A.. 1998; Mycobacterium celatum infection in a patient with AIDS. Clin Infect Dis26:243–245[CrossRef]
    [Google Scholar]
  3. Brosbe E. A., Sugihara P. T., Smith C. R.. 1962; Growth characteristics of Mycobacterium avium and group III nonphotochromogenic mycobacteria in HeLa cells. J Bacteriol84:1282–1286
    [Google Scholar]
  4. Bull T. J., Shanson D. C., Archard L. C., Yates M. D., Hamid M. E., Minnikin D. E.. 1995; A new group (type 3) of Mycobacterium celatum isolated from AIDS patients in the London area. Int J Syst Bacteriol45:861–862[CrossRef]
    [Google Scholar]
  5. Butler W. R., O’Connor S. P., Yakrus M. A..8 other authors 1993; Mycobacterium celatum sp. nov. Int J Syst Bacteriol43:539–548[CrossRef]
    [Google Scholar]
  6. Bux-Gewehr I., Hagen H. P., Rüsch-Gerdes S. R., Feurle G. E.. 1998; Fatal pulmonary infection with Mycobacterium celatum in an apparently immunocompetent patient. J Clin Microbiol36:587–588
    [Google Scholar]
  7. Crowle A. J., Tsang A. Y., Vatter A. E., May M. H.. 1986; Comparison of 15 laboratory and patient-derived strains of Mycobacterium avium for ability to infect and multiply in cultured human macrophages. Infect Immun24:812–821
    [Google Scholar]
  8. Cynamon M. H., Klemens S. P.. 1992; Activity of azithromycin against Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother36:1611–1613[CrossRef]
    [Google Scholar]
  9. Fattorini L., Li B., Piersimoni C., Tortoli E., Xiao Y., Santoro C., Ricci M. L., Orefici G.. 1995; In vitro and ex vivo activities of antimicrobial agents used in combination with clarithromycin, with or without amikacin, against Mycobacterium avium. Antimicrob Agents Chemother39:680–685[CrossRef]
    [Google Scholar]
  10. Fattorini L., Xiao Y., Mattei M., Li Y., Iona E., Ricci M. L., Thoresen O. F., Creti R., Orefici G.. 1998; Activity of isoniazid alone and in combination with other drugs against Mycobacterium avium infection in beige mice. Antimicrob Agents Chemother42:712–714
    [Google Scholar]
  11. Gangadharam P. R. J.. 1995; Beige mouse model of Mycobacterium avium complex disease. Antimicrob Agents Chemother39:1647–1654[CrossRef]
    [Google Scholar]
  12. Gholizadeh Y., Varnerot A., Maslo C., Salauze B., Badaoui H., Vincent V., Buré-Rossier A.. 1998; Mycobacterium celatum infection in two HIV-infected patients treated prophylactically with rifabutin. Eur J Clin Infect Dis17:278–281[CrossRef]
    [Google Scholar]
  13. Hart P. D., Young M. R.. 1975; Interference with normal phagosome-lysosome fusion in macrophages, using ingested yeast cells and suramin. Nature256:47–49[CrossRef]
    [Google Scholar]
  14. Inderlied C. B., Kolonowski P. T., Wu M., Young L. S.. 1989; Amikacin, ciprofloxacin, and imipenem treatment for disseminated Mycobacterium avium complex infection of beige mice. Antimicrob Agents Chemother33:176–180[CrossRef]
    [Google Scholar]
  15. Ji B., Lounis N., Trouffot-Pernot C., Grosset J.. 1994; Effectiveness of various antimicrobial agents against Mycobacterium avium complex in the beige mouse model. Antimicrob Agents Chemother38:2521–2529[CrossRef]
    [Google Scholar]
  16. Klemens S. P., DeStefano M. S., Cynamon M. H.. 1993; Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob Agents Chemother37:2344–2347[CrossRef]
    [Google Scholar]
  17. McCarthy C.. 1974; Effect of palmitic acid utilization on cell division in Mycobacterium avium. Infect Immun9:363–372
    [Google Scholar]
  18. Master R. N.. 1992; Mycobacteriology. In Clinical Microbiology Procedure Handbookvol. 1 pp.3.1–3.16Edited by Isenberg H. D.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Masur H.. 1993; Recommendations on prophylaxis and therapy for disseminated Mycobacterium avium complex disease in patients infected with human immuno-deficiency virus. N Engl J Med329:898–904[CrossRef]
    [Google Scholar]
  20. Meylan P. R., Richman D. D., Kornbluth R. S.. 1990; Characterization and growth in human macrophages of Mycobacterium avium complex strains isolated from the blood of patients with acquired immunodeficiency syndrome. Infect Immun58:2564–2568
    [Google Scholar]
  21. Nakagawara A. C., Nathan C. F.. 1983; A simple method for counting adherent cells: application to cultured human monocytes, macrophages and multinucleated giant cells. J Immunol Methods56:261–268[CrossRef]
    [Google Scholar]
  22. Piersimoni C., Tortoli E., De Sio G.. 1994; Disseminated infection due to Mycobacterium celatum in patient with AIDS. Lancet344:332
    [Google Scholar]
  23. Piersimoni C., Tortoli E., de Lalla F., Nista D., Donato D., Bornigia S., De Sio G.. 1997; Isolation of Mycobacterium celatum from patients infected with human immunodeficiency virus. Clin Infect Dis24:144–147[CrossRef]
    [Google Scholar]
  24. Rastogi N., Levy-Frebault V., Blom-Potar M. C., David H.. 1989; Ability of smooth and rough variants of Mycobacterium avium and M. intracellulare to multiply and survive intracellularly: role of C-mycosides. Zentralbl Bakteriol Mikrobiol Hyg A270:345–360
    [Google Scholar]
  25. Reddy V. M., Luna-Heerera J., Gangadharam P. R. J.. 1996; Pathobiological significance of colony morphology in Mycobacterium avium complex. Microb Pathog21:97–109[CrossRef]
    [Google Scholar]
  26. Schaefer W. B., Davis C. L., Cohn M. L.. 1970; Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am Rev Respir Dis102:499–506
    [Google Scholar]
  27. Tortoli E., Piersimoni C., Bacosi D..11 other authors 1995; Isolation of the newly described species Mycobacterium celatum from AIDS patients. J Clin Microbiol33:137–140
    [Google Scholar]
  28. Woodley C. L., David H. L.. 1976; Effect of temperature on the rate of the transparent to opaque colony type transition in Mycobacterium avium. Antimicrob Agents Chemother9:113–119[CrossRef]
    [Google Scholar]
  29. Zurawski C. A., Cage G. D., Rimland D., Blumberg H. M.. 1997; Pneumonia and bacteremia due to Mycobacterium celatum masquerading as Mycobacterium xenopi in patients with AIDS: an underdiagnosed problem?. Clin Infect Dis24:140–143[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2733
Loading
/content/journal/micro/10.1099/00221287-146-11-2733
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error