1887
Preview this article:
Zoom in
Zoomout

Closing in on and its intracellular bag of tricks, Page 1 of 1

| /docserver/preview/fulltext/micro/146/11/1462723a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Keyword(s): Chlamydia , pathogenesis and secretion
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2723
2000-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462723a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2723&mimeType=html&fmt=ahah

References

  1. Baehr, W., Zhang, Y.-X., Joseph, T., Su, H., Nano, F. E., Everett, K. D. E. & Caldwell, H. D. ( 1988; ). Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci U S A 85, 4000-4004.[CrossRef]
    [Google Scholar]
  2. Banchereau, J. & Steinman, R. M. ( 1998; ). Dendritic cells and the control of immunity. Nature 392, 245-252.[CrossRef]
    [Google Scholar]
  3. Bannantine, J. P. & Rockey, D. D. ( 1999; ). Use of primate model system to identify Chlamydia trachomatis protein antigens recognized uniquely in the context of infection. Microbiology 145, 2077-2085.[CrossRef]
    [Google Scholar]
  4. Barbour, A. G., Amato, K.-I., Hackstadt, T., Perry, L. & Caldwell, H. D. ( 1982; ). Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151, 420-428.
    [Google Scholar]
  5. Bavoil, P. M. & Hsia, R.-c. ( 1998; ). Type III secretion in Chlamydia: a case of déjà vu? Mol Microbiol 28, 860-862.
    [Google Scholar]
  6. Bavoil, P. M., Hsia, R.-c. & Rank, R. G. ( 1996; ). Prospects for a vaccine against Chlamydia genital disease. I. Microbiology and pathogenesis. Bull Inst Pasteur 94, 5-54.[CrossRef]
    [Google Scholar]
  7. Birkelund, S., Johnsen, H. & Christiansen, G. ( 1994; ). Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect Immun 62, 4900-4908.
    [Google Scholar]
  8. Boleti, H., Benmerah, A., Ojcius, D. M., Cerf-Bensussan, N. & Dautry-Varsat, A. ( 1999; ). Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. J Cell Sci 112, 1487-1496.
    [Google Scholar]
  9. Burland, V., Shao, Y., Perna, N. T., Plunkett, G., Sofia, H. J. & Blattner, F. R. ( 1998; ). The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26, 4196-4204.[CrossRef]
    [Google Scholar]
  10. Buse, M. G., Robinson, K. A., Marshall, B. A. & Mueckler, M. ( 1996; ). Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem 271, 23197-23202.[CrossRef]
    [Google Scholar]
  11. Chopra, I., Storey, C., Falla, T. J. & Pearce, J. H. ( 1998; ). Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144, 2673-2678.[CrossRef]
    [Google Scholar]
  12. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. ( 1998; ). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30, 175-188.[CrossRef]
    [Google Scholar]
  13. von Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. ( 1996; ). Large clostridial cytotoxins – a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4, 375-382.[CrossRef]
    [Google Scholar]
  14. Farencena, A., Comanducci, M., Donati, M., Ratti, G. & Cevenini, R. ( 1997; ). Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65, 2965-2969.
    [Google Scholar]
  15. Fawaz, F. S., van Ooij, C., Homola, E., Mutka, S. C. & Engel, J. N. ( 1997; ). Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect Immun 65, 5301-5308.
    [Google Scholar]
  16. Gaydos, C. A., Quinn, T. C., Bobo, L. D. & Eiden, J. J. ( 1992; ). Similarity of Chlamydia pneumoniae strains in the variable domain IV region of the major outer membrane protein gene. Infect Immun 60, 5319-5323.
    [Google Scholar]
  17. Gaydos, C. A., Summersgill, J. T., Sahney, N. N., Ramirez, J. A. & Quinn, T. C. ( 1996; ). Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64, 1614-1620.
    [Google Scholar]
  18. Gerbase, A. C., Rowley, J. T. & Mertens, T. E. ( 1998; ). Global epidemiology of sexually transmitted diseases. Lancet 351, 2-4.[CrossRef]
    [Google Scholar]
  19. Ghuysen, J. M. & Goffin, C. ( 1999; ). Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43, 2339-2344.
    [Google Scholar]
  20. Girjes, A. A., Carrick, F. N. & Lavin, M. F. ( 1994; ). Remarkable sequence relatedness in the DNA encoding the major outer membrane protein of Chlamydia psittaci (koala type I) and Chlamydia pneumoniae. Gene 138, 139-142.[CrossRef]
    [Google Scholar]
  21. Grayston, J. T. ( 1999; ). Does Chlamydia pneumoniae cause atherosclerosis? Arch Surg 134, 930-934.[CrossRef]
    [Google Scholar]
  22. Hackstadt, T. ( 1999; ). Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 101-138. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  23. Hackstadt, T., Fischer, E. R., Scidmore, M. A., Rockey, D. D. & Heinzen, R. A. ( 1997; ). Origins and functions of the chlamydial inclusion. Trends Microbiol 5, 288-293.[CrossRef]
    [Google Scholar]
  24. Hackstadt, T., Scidmore-Carlson, M. A., Shaw, E. I. & Fischer, E. R. ( 1999; ). The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1, 119-130.[CrossRef]
    [Google Scholar]
  25. Hatch, G. M. & McClarty, G. ( 1998; ). Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66, 3727-3735.
    [Google Scholar]
  26. Hatch, T. P. ( 1996; ). Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol 178, 1-5.
    [Google Scholar]
  27. Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. ( 1982; ). Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol 150, 662.
    [Google Scholar]
  28. Hensel, M., Shea, J. E., Waterman, S. R. & 7 other authors ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  29. Hsia, R.-c., Pannekoek, Y., Ingerowski, E. & Bavoil, P. M. ( 1997; ). Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25, 351-359.[CrossRef]
    [Google Scholar]
  30. Hsia, R.-c., Ting, L.-M. & Bavoil, P. M. ( 2000; ). Microvirus of Chlamydia psittaci strain Guinea Pig Inclusion Conjunctivitis: isolation and molecular characterization. Microbiology 146, 1651-1660.
    [Google Scholar]
  31. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379-433.
    [Google Scholar]
  32. Iliffe-Lee, E. R. & McClarty, G. ( 1999; ). Glucose metabolism in Chlamydia trachomatis: the ‘energy parasite’ hypothesis revisited. Mol Microbiol 33, 177-187.[CrossRef]
    [Google Scholar]
  33. Kalman, S., Mitchell, W., Marathe, R. & 7 other authors ( 1999; ). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nature Genet 21, 385–389.[CrossRef]
    [Google Scholar]
  34. Knudsen, K., Madsen, A. S., Mygind, P., Christiansen, G. & Birkelund, S. ( 1999; ). Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae. Infect Immun 67, 375-383.
    [Google Scholar]
  35. Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J. E. & Aizawa, S. I. ( 1998; ). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602-605.[CrossRef]
    [Google Scholar]
  36. Liu, B. L., Everson, J. S., Fane, B., Giannikopoulou, P., Vretou, E., Lambden, P. R. & Clarke, I. N. ( 2000; ). Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 74, 3464-3469.[CrossRef]
    [Google Scholar]
  37. Longbottom, D., Findlay, J., Vretou, E. & Dunbar, S. M. ( 1998a; ). Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol Lett 164, 111-117.[CrossRef]
    [Google Scholar]
  38. Longbottom, D., Russell, M., Dunbar, S. M., Jones, G. E. & Herring, A. J. ( 1998b; ). Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun 66, 1317-1324.
    [Google Scholar]
  39. McClarty, G. ( 1999; ). Chlamydial metabolism as inferred from the complete genome sequence. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 69-100. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  40. Makarova, K. S., Aravind, L. & Koonin, E. V. ( 2000; ). A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 25, 50-52.[CrossRef]
    [Google Scholar]
  41. Makino, K., Ishii, K., Yasunaga, T. & 14 other authors ( 1998; ). Complete nucleotide sequences of 93-kb and 3·3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res 5, 1–9.[CrossRef]
    [Google Scholar]
  42. Moulder, J. W. ( 1991; ). Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55, 143-190.
    [Google Scholar]
  43. Moulder, J. W. ( 1993; ). Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2, 87-99.
    [Google Scholar]
  44. Newhall, W. J. ( 1988; ). Macromolecular and antigenic composition of chlamydiae. In Microbiology of Chlamydia, pp. 47-70. Edited by A. L. Barron. Boca Raton, FL: CRC Press.
  45. Nigg, C. & Eaton, M. D. ( 1944; ). Isolation from normal mice of a pneumotropic virus which forms elementary bodies. J Exp Med 79, 497-510.[CrossRef]
    [Google Scholar]
  46. O’Connell, C. M. C. & Maurelli, A. T. ( 1998; ). Introduction of foreign DNA into Chlamydia and stable expression of chloramphenicol resistance. In Proceedings of the Ninth International Symposium on Human Chlamydial Infection, pp. 519-522. Edited by R. Stephens, G. Byrne, G. Christiansen, I. Clarke, J. Grayston, R. Rank, G. Ridgway, P. Saikku, J. Schachter & W. Stamm. San Francisco, CA: International Chlamydia Symposium.
  47. Ojcius, D. M., Bravo de Alba, Y., Kanellopoulos, J. M., Hawkins, R. A., Kelly, K. A., Rank, R. G. & Dautry-Varsat, A. ( 1998a; ). Internalization of Chlamydia by dendritic cells and stimulation of Chlamydia-specific T cells. J Immunol 160, 1297-1303.
    [Google Scholar]
  48. Ojcius, D. M., Degani, H., Mispelter, J. & Dautry-Varsat, A. ( 1998b; ). Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273, 7052-7058.[CrossRef]
    [Google Scholar]
  49. Read, T. D., Brunham, R. C., Shen, C. & 22 other authors ( 2000; ). Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28, 1397–1406.[CrossRef]
    [Google Scholar]
  50. Ren, J. M., Marshall, B. A., Gulve, E. A., Gao, J., Johnson, D. W., Holloszy, J. O. & Mueckler, M. ( 1993; ). Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem 268, 16113-16115.
    [Google Scholar]
  51. Rockey, D. D. & Matsumoto, A. ( 1999; ). The chlamydial developmental cycle. In Prokaryotic Development, pp. 403-425. Edited by Y. V. Brun & L. J. Shimkets. Washington, DC: American Society for Microbiology.
  52. Rockey, D. D., Heinzen, R. A. & Hackstadt, T. ( 1995; ). Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol 15, 617-626.
    [Google Scholar]
  53. Rockey, D. D., Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A. & Hackstadt, T. ( 1997; ). Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol Microbiol 24, 217-228.[CrossRef]
    [Google Scholar]
  54. Scidmore-Carlson, M. A., Shaw, E. I., Dooley, C. A., Fischer, E. R. & Hackstadt, T. ( 1999; ). Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol Microbiol 33, 753-765.[CrossRef]
    [Google Scholar]
  55. Sorbara, L. R., Maldarelli, F., Chamoun, G., Schilling, B., Chokekijcahi, S., Staudt, L., Mitsuya, H., Simpson, I. A. & Zeichner, S. L. ( 1996; ). Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J Virol 70, 7275-7279.
    [Google Scholar]
  56. Stephens, R. S. ( 1989; ). Antigenic variation of Chlamydia trachomatis. In Intracellular Parasitism, pp. 51-62. Edited by J. W. Moulder. Boca Raton, FL: CRC Press.
  57. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  58. Stephens, R. S., Fawaz, F. S., Kennedy, K. A., Koshiyama, K., Nichols, B., van Ooij, C. & Engel, J. N. ( 2000; ). Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect Immun 68, 1080-1085.[CrossRef]
    [Google Scholar]
  59. Storey, C. C., Lusher, M. & Richmond, S. J. ( 1989; ). Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 70, 3381-3390.[CrossRef]
    [Google Scholar]
  60. Stothard, D. R., Williams, J. A., Van der Pol, B. & Jones, R. B. ( 1998; ). Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66, 6010-6013.
    [Google Scholar]
  61. Su, H., Zhang, Y. X. & Li, R. ( 1985; ). Presence of muramic acid in Chlamydia trachomatis proved by liquid chromatography-mass spectrometry. Kexue Tongbao 30, 695-699.
    [Google Scholar]
  62. Su, H., Zhang, Y.-X., Barrera, O., Watkins, N. G. & Caldwell, H. D. ( 1988; ). Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. Infect Immun 56, 2094-2100.
    [Google Scholar]
  63. Su, H., Watkins, N. G., Zhang, Y.-X. & Caldwell, H. D. ( 1990; ). Chlamydia trachomatis–host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 58, 1017-1025.
    [Google Scholar]
  64. Suchland, R. J., Rockey, D. D., Bannantine, J. P. & Stamm, W. E. ( 2000; ). Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68, 360-367.[CrossRef]
    [Google Scholar]
  65. Thylefors, B., Negrel, A. D., Pararajasegaram, R. & Dadzie, K. Y. ( 1995; ). Global data on blindness. Bull WHO 73, 115-121.
    [Google Scholar]
  66. Tjaden, J., Winkler, H. H., Schwoppe, C., Van Der Laan, M., Mohlmann, T. & Neuhaus, H. E. ( 1999; ). Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J Bacteriol 181, 1196-1202.
    [Google Scholar]
  67. Wylie, J. L., Hatch, G. M. & McClarty, G. ( 1997; ). Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179, 7233-7242.
    [Google Scholar]
  68. Wyrick, P. B., Choong, J., Davis, C. H., Knight, S. T., Royal, M. O., Maslow, A. S. & Bagnell, C. R. ( 1989; ). Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun 57, 2378-2389.
    [Google Scholar]
  69. Yuan, Y., Zhang, Y.-X., Watkins, N. G. & Caldwell, H. D. ( 1989; ). Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57, 1040-1049.
    [Google Scholar]
  70. Zhao, Q., Schachter, J. & Stephens, R. S. ( 1993; ). Lack of allelic polymorphism for the major outer membrane protein gene of the agent of guinea pig inclusion conjunctivitis (Chlamydia psittaci). Infect Immun 61, 3078-3080.
    [Google Scholar]
  71. Zomorodipour, A. & Andersson, S. G. ( 1999; ). Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett 452, 11-15.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2723
Loading
/content/journal/micro/10.1099/00221287-146-11-2723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error