1887
Preview this article:
Zoom in
Zoomout

Closing in on and its intracellular bag of tricks, Page 1 of 1

| /docserver/preview/fulltext/micro/146/11/1462723a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Keyword(s): Chlamydia , pathogenesis and secretion
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2723
2000-11-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462723a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2723&mimeType=html&fmt=ahah

References

  1. Baehr W., Zhang Y.-X., Joseph T., Su H., Nano F. E., Everett K. D. E., Caldwell H. D.. 1988; Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci U S A85:4000–4004[CrossRef]
    [Google Scholar]
  2. Banchereau J., Steinman R. M.. 1998; Dendritic cells and the control of immunity. Nature392:245–252[CrossRef]
    [Google Scholar]
  3. Bannantine J. P., Rockey D. D.. 1999; Use of primate model system to identify Chlamydia trachomatis protein antigens recognized uniquely in the context of infection. Microbiology145:2077–2085[CrossRef]
    [Google Scholar]
  4. Barbour A. G., Amato K.-I., Hackstadt T., Perry L., Caldwell H. D.. 1982; Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol151:420–428
    [Google Scholar]
  5. Bavoil P. M., Hsia R.-c.. 1998; Type III secretion in Chlamydia: a case of déjà vu?. Mol Microbiol28:860–862
    [Google Scholar]
  6. Bavoil P. M., Hsia R.-c., Rank R. G.. 1996; Prospects for a vaccine against Chlamydia genital disease. I. Microbiology and pathogenesis. Bull Inst Pasteur94:5–54[CrossRef]
    [Google Scholar]
  7. Birkelund S., Johnsen H., Christiansen G.. 1994; Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect Immun62:4900–4908
    [Google Scholar]
  8. Boleti H., Benmerah A., Ojcius D. M., Cerf-Bensussan N., Dautry-Varsat A.. 1999; Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. J Cell Sci112:1487–1496
    [Google Scholar]
  9. Burland V., Shao Y., Perna N. T., Plunkett G., Sofia H. J., Blattner F. R.. 1998; The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res26:4196–4204[CrossRef]
    [Google Scholar]
  10. Buse M. G., Robinson K. A., Marshall B. A., Mueckler M.. 1996; Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem271:23197–23202[CrossRef]
    [Google Scholar]
  11. Chopra I., Storey C., Falla T. J., Pearce J. H.. 1998; Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology144:2673–2678[CrossRef]
    [Google Scholar]
  12. Cirillo D. M., Valdivia R. H., Monack D. M., Falkow S.. 1998; Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol30:175–188[CrossRef]
    [Google Scholar]
  13. von Eichel-Streiber C., Boquet P., Sauerborn M., Thelestam M.. 1996; Large clostridial cytotoxins – a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol4:375–382[CrossRef]
    [Google Scholar]
  14. Farencena A., Comanducci M., Donati M., Ratti G., Cevenini R.. 1997; Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun65:2965–2969
    [Google Scholar]
  15. Fawaz F. S., van Ooij C., Homola E., Mutka S. C., Engel J. N.. 1997; Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect Immun65:5301–5308
    [Google Scholar]
  16. Gaydos C. A., Quinn T. C., Bobo L. D., Eiden J. J.. 1992; Similarity of Chlamydia pneumoniae strains in the variable domain IV region of the major outer membrane protein gene. Infect Immun60:5319–5323
    [Google Scholar]
  17. Gaydos C. A., Summersgill J. T., Sahney N. N., Ramirez J. A., Quinn T. C.. 1996; Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun64:1614–1620
    [Google Scholar]
  18. Gerbase A. C., Rowley J. T., Mertens T. E.. 1998; Global epidemiology of sexually transmitted diseases. Lancet351:2–4[CrossRef]
    [Google Scholar]
  19. Ghuysen J. M., Goffin C.. 1999; Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother43:2339–2344
    [Google Scholar]
  20. Girjes A. A., Carrick F. N., Lavin M. F.. 1994; Remarkable sequence relatedness in the DNA encoding the major outer membrane protein of Chlamydia psittaci (koala type I) and Chlamydia pneumoniae. Gene138:139–142[CrossRef]
    [Google Scholar]
  21. Grayston J. T.. 1999; Does Chlamydia pneumoniae cause atherosclerosis?. Arch Surg134:930–934[CrossRef]
    [Google Scholar]
  22. Hackstadt T.. 1999; Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity pp.101–138Edited by Stephens R. S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Hackstadt T., Fischer E. R., Scidmore M. A., Rockey D. D., Heinzen R. A.. 1997; Origins and functions of the chlamydial inclusion. Trends Microbiol5:288–293[CrossRef]
    [Google Scholar]
  24. Hackstadt T., Scidmore-Carlson M. A., Shaw E. I., Fischer E. R.. 1999; The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol1:119–130[CrossRef]
    [Google Scholar]
  25. Hatch G. M., McClarty G.. 1998; Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun66:3727–3735
    [Google Scholar]
  26. Hatch T. P.. 1996; Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae?. J Bacteriol178:1–5
    [Google Scholar]
  27. Hatch T. P., Al-Hossainy E., Silverman J. A.. 1982; Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol150:662
    [Google Scholar]
  28. Hensel M., Shea J. E., Waterman S. R..7 other authors 1998; Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol30:163–174[CrossRef]
    [Google Scholar]
  29. Hsia R.-c., Pannekoek Y., Ingerowski E., Bavoil P. M.. 1997; Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol25:351–359[CrossRef]
    [Google Scholar]
  30. Hsia R.-c., Ting L.-M., Bavoil P. M.. 2000; Microvirus of Chlamydia psittaci strain Guinea Pig Inclusion Conjunctivitis: isolation and molecular characterization. Microbiology146:1651–1660
    [Google Scholar]
  31. Hueck C. J.. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  32. Iliffe-Lee E. R., McClarty G.. 1999; Glucose metabolism in Chlamydia trachomatis: the ‘energy parasite’ hypothesis revisited. Mol Microbiol33:177–187[CrossRef]
    [Google Scholar]
  33. Kalman S., Mitchell W., Marathe R..7 other authors 1999; Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nature Genet21:385–389[CrossRef]
    [Google Scholar]
  34. Knudsen K., Madsen A. S., Mygind P., Christiansen G., Birkelund S.. 1999; Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae. Infect Immun67:375–383
    [Google Scholar]
  35. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galan J. E., Aizawa S. I.. 1998; Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280:602–605[CrossRef]
    [Google Scholar]
  36. Liu B. L., Everson J. S., Fane B., Giannikopoulou P., Vretou E., Lambden P. R., Clarke I. N.. 2000; Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol74:3464–3469[CrossRef]
    [Google Scholar]
  37. Longbottom D., Findlay J., Vretou E., Dunbar S. M.. 1998a; Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol Lett164:111–117[CrossRef]
    [Google Scholar]
  38. Longbottom D., Russell M., Dunbar S. M., Jones G. E., Herring A. J.. 1998b; Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun66:1317–1324
    [Google Scholar]
  39. McClarty G.. 1999; Chlamydial metabolism as inferred from the complete genome sequence. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity pp.69–100Edited by Stephens R. S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Makarova K. S., Aravind L., Koonin E. V.. 2000; A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci25:50–52[CrossRef]
    [Google Scholar]
  41. Makino K., Ishii K., Yasunaga T..14 other authors 1998; Complete nucleotide sequences of 93-kb and 3·3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res5:1–9[CrossRef]
    [Google Scholar]
  42. Moulder J. W.. 1991; Interaction of chlamydiae and host cells in vitro. Microbiol Rev55:143–190
    [Google Scholar]
  43. Moulder J. W.. 1993; Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan?. Infect Agents Dis2:87–99
    [Google Scholar]
  44. Newhall W. J.. 1988; Macromolecular and antigenic composition of chlamydiae. In Microbiology of Chlamydia pp.47–70Edited by Barron A. L.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  45. Nigg C., Eaton M. D.. 1944; Isolation from normal mice of a pneumotropic virus which forms elementary bodies. J Exp Med79:497–510[CrossRef]
    [Google Scholar]
  46. O’Connell C. M. C., Maurelli A. T.. 1998; Introduction of foreign DNA into Chlamydia and stable expression of chloramphenicol resistance. In Proceedings of the Ninth International Symposium on Human Chlamydial Infection pp.519–522Edited by Stephens R., Byrne G., Christiansen G., Clarke I., Grayston J., Rank R., Ridgway G., Saikku P., Schachter J., Stamm W.. San Francisco, CA: International Chlamydia Symposium;
    [Google Scholar]
  47. Ojcius D. M., Bravo de Alba Y., Kanellopoulos J. M., Hawkins R. A., Kelly K. A., Rank R. G., Dautry-Varsat A.. 1998a; Internalization of Chlamydia by dendritic cells and stimulation of Chlamydia-specific T cells. J Immunol160:1297–1303
    [Google Scholar]
  48. Ojcius D. M., Degani H., Mispelter J., Dautry-Varsat A.. 1998b; Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem273:7052–7058[CrossRef]
    [Google Scholar]
  49. Read T. D., Brunham R. C., Shen C..22 other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res28:1397–1406[CrossRef]
    [Google Scholar]
  50. Ren J. M., Marshall B. A., Gulve E. A., Gao J., Johnson D. W., Holloszy J. O., Mueckler M.. 1993; Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem268:16113–16115
    [Google Scholar]
  51. Rockey D. D., Matsumoto A.. 1999; The chlamydial developmental cycle. In Prokaryotic Development pp.403–425Edited by Brun Y. V., Shimkets L. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  52. Rockey D. D., Heinzen R. A., Hackstadt T.. 1995; Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol15:617–626
    [Google Scholar]
  53. Rockey D. D., Grosenbach D., Hruby D. E., Peacock M. G., Heinzen R. A., Hackstadt T.. 1997; Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol Microbiol24:217–228[CrossRef]
    [Google Scholar]
  54. Scidmore-Carlson M. A., Shaw E. I., Dooley C. A., Fischer E. R., Hackstadt T.. 1999; Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol Microbiol33:753–765[CrossRef]
    [Google Scholar]
  55. Sorbara L. R., Maldarelli F., Chamoun G., Schilling B., Chokekijcahi S., Staudt L., Mitsuya H., Simpson I. A., Zeichner S. L.. 1996; Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J Virol70:7275–7279
    [Google Scholar]
  56. Stephens R. S.. 1989; Antigenic variation of Chlamydia trachomatis. In Intracellular Parasitism pp.51–62Edited by Moulder J. W.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  57. Stephens R. S., Kalman S., Lammel C..9 other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science282:754–759[CrossRef]
    [Google Scholar]
  58. Stephens R. S., Fawaz F. S., Kennedy K. A., Koshiyama K., Nichols B., van Ooij C., Engel J. N.. 2000; Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect Immun68:1080–1085[CrossRef]
    [Google Scholar]
  59. Storey C. C., Lusher M., Richmond S. J.. 1989; Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol70:3381–3390[CrossRef]
    [Google Scholar]
  60. Stothard D. R., Williams J. A., Van der Pol B., Jones R. B.. 1998; Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun66:6010–6013
    [Google Scholar]
  61. Su H., Zhang Y. X., Li R.. 1985; Presence of muramic acid in Chlamydia trachomatis proved by liquid chromatography-mass spectrometry. Kexue Tongbao30:695–699
    [Google Scholar]
  62. Su H., Zhang Y.-X., Barrera O., Watkins N. G., Caldwell H. D.. 1988; Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. Infect Immun56:2094–2100
    [Google Scholar]
  63. Su H., Watkins N. G., Zhang Y.-X., Caldwell H. D.. 1990; Chlamydia trachomatis–host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun58:1017–1025
    [Google Scholar]
  64. Suchland R. J., Rockey D. D., Bannantine J. P., Stamm W. E.. 2000; Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun68:360–367[CrossRef]
    [Google Scholar]
  65. Thylefors B., Negrel A. D., Pararajasegaram R., Dadzie K. Y.. 1995; Global data on blindness. Bull WHO73:115–121
    [Google Scholar]
  66. Tjaden J., Winkler H. H., Schwoppe C., Van Der Laan M., Mohlmann T., Neuhaus H. E.. 1999; Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J Bacteriol181:1196–1202
    [Google Scholar]
  67. Wylie J. L., Hatch G. M., McClarty G.. 1997; Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol179:7233–7242
    [Google Scholar]
  68. Wyrick P. B., Choong J., Davis C. H., Knight S. T., Royal M. O., Maslow A. S., Bagnell C. R.. 1989; Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun57:2378–2389
    [Google Scholar]
  69. Yuan Y., Zhang Y.-X., Watkins N. G., Caldwell H. D.. 1989; Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun57:1040–1049
    [Google Scholar]
  70. Zhao Q., Schachter J., Stephens R. S.. 1993; Lack of allelic polymorphism for the major outer membrane protein gene of the agent of guinea pig inclusion conjunctivitis (Chlamydia psittaci). Infect Immun61:3078–3080
    [Google Scholar]
  71. Zomorodipour A., Andersson S. G.. 1999; Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett452:11–15[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2723
Loading
/content/journal/micro/10.1099/00221287-146-11-2723
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error