1887

Abstract

, the causative agent of cryptococcosis, produces large amounts of mannitol in culture and in infected mammalian hosts. Although there is considerable indirect evidence that mannitol synthesis may be required for wild-type stress tolerance and virulence in , this hypothesis has not been tested directly. It has been proposed that mannitol-1-phosphate dehydrogenase (MPD) is required for fungal mannitol synthesis, but no MPD-deficient fungal mutants or cDNAs or genes encoding fungal MPDs have been described. Therefore, was purified from a 148 kDa homotetramer of 36 kDa subunits that catalysed the reaction mannitol1-phosphate+NAD→←fructose 6-phosphate+NADH. Partial peptide sequences were used to isolate the corresponding cDNA and gene, and the deduced MPD protein was found to be homologous to the zinc-containing long-chain alcohol/polyol dehydrogenases. Lysates of transformed with the cDNA of interest (but not vector-transformed controls) contained MPD catalytic activity. Lastly, Northern analyses demonstrated MPD mRNA in glucose- and mannitol-grown cells. Thus, MPD has been purified and characterized from , and the corresponding cDNA and gene () cloned and sequenced. Availability of should permit direct testing of the hypotheses that (i) MPD is required for mannitol biosynthesis and (ii) the ability to synthesize mannitol is essential for wild-type stress tolerance and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2705
2000-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462705a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2705&mimeType=html&fmt=ahah

References

  1. Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. 1994; GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in S. cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. . Mol Cell Biol 14:4135–4144
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. . Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Brown A. T., Bowles R. D. 1977; Polyol metabolism by a caries-conducive Streptococcus: purification and properties of a nicotinamide adenine dinucleotide-dependent mannitol-1-phosphate dehydrogenase. Infect Immun 16:163–173
    [Google Scholar]
  5. Chang Y. C., Penoyer L. A., Kwon-Chung J. K. 1996; The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64:1977–1983
    [Google Scholar]
  6. Chaturvedi V., Flynn T., Niehaus W. G., Wong B. 1996a; Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology 142:937–943 [CrossRef]
    [Google Scholar]
  7. Chaturvedi V. P., Wong B., Newman S. L. 1996b; Oxidative killing of Cryptococcus neoformans by human neutrophils: evidence that fungal mannitol protects by scavenging oxidants. J Immunol 156:3836–3840
    [Google Scholar]
  8. Chaturvedi V., Bartiss A., Wong B. 1997; Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J Bacteriol 179:157–162
    [Google Scholar]
  9. Cox G. M., Rude T. H., Dykstra C. C., Perfect J. R. 1995; The actin gene from Cryptococcus neoformans: structure and phylogenetic analysis. J Med Vet Mycol 33:261–266 [CrossRef]
    [Google Scholar]
  10. Eriksson P., Andre L., Ansell R., Bloomberg A., Alder L. 1995; Cloning and characterization of GPD2, a second gene encoding sn-glycerol-3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17:96–107
    [Google Scholar]
  11. Fischer R., Von Strandmann R. P., Hengstenberg W. 1991; Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: molecular cloning and nucleotide sequences of the enzymeIIImtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes. J Bacteriol 173:3709–3715
    [Google Scholar]
  12. Foreman J. E., Niehaus W. G. 1985; Zn2+-induced cooperativity of mannitol-1-phosphate dehydrogenase from Aspergillus parasiticus. J Biol Chem 260:10019–10022
    [Google Scholar]
  13. Gwynne D. I., Buxton F. P., Sibley S., Davies R. W., Lockington R., Scazzocchio A., Sealy-Lewis H. M. 1987; Comparison of the cis-acting control regions of two coordinately controlled genes involved in ethanol utilization in Aspergillus nidulans. Gene 51:205–216 [CrossRef]
    [Google Scholar]
  14. Hult K., Veide A., Gatenbeck S. 1980; The distribution of the NADPH regenerating mannitol cycle among fungal species. Arch Microbiol 128:253–255 [CrossRef]
    [Google Scholar]
  15. Jennings D. H. 1984; Polyol metabolism in fungi. Adv Microb Physiol 25:149–193
    [Google Scholar]
  16. Jornvall H., Persson B., Jeffery J. 1987; Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. . Eur J Biochem 167:195–201 [CrossRef]
    [Google Scholar]
  17. Kiser R. C., Niehaus W. G. 1981; Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from Aspergillus niger. Arch Biochem Biophys 211:613–621 [CrossRef]
    [Google Scholar]
  18. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Lodge J. K., Jackson-Machelski E., Toffaletti D. L., Perfect J. R., Gordon J. I. 1994; Targeted gene replacement demonstrates that myristoyl-CoA:protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc Natl Acad Sci U S A 91:12008–12012 [CrossRef]
    [Google Scholar]
  21. McKnight G. L., Kato H., Upshall A., Parker M. D., Saari G., O’Hara P. J. 1985; Identification and molecular analysis of a third Aspergillus nidulans alcohol dehydrogenase gene. EMBO J 4:2093–2099
    [Google Scholar]
  22. Niehaus W. G., Flynn T. 1994; Regulation of mannitol biosynthesis and degradation by Cryptococcus neoformans. J Bacteriol 176:651–655
    [Google Scholar]
  23. Novotny M. J., Reizer J., Esch F., Saier M. H. Jr 1984; Purification and properties of d-mannitol-1-phosphate dehydrogenase and d-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 159:986–990
    [Google Scholar]
  24. O’Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. . J Biol Chem 250:4007–4021
    [Google Scholar]
  25. Parker R., Patterson B. 1987 Molecular Biology of RNA: New PerspectivesEdited by Inouye M., Dudock B. S. New York: Academic Press;
    [Google Scholar]
  26. Saliola M., Gonnella R., Mazzony C., Falcone C. 1991; Two genes encoding putative mitochondrial alcohol dehydrogenases are present in the yeast Kluyveromyces lactis. Yeast 7:391–400 [CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schmatz D. M. 1997; The mannitol cycle in Eimeria. Parasitology 114S:S81–S89
    [Google Scholar]
  29. Shen H. D., Choo K. B., Lee H. H., Hsieh J. C., Lee W. R., Han S. H. 1991; The 40-kilodalton allergen of Candida albicans is an alcohol dehydrogenase: molecular cloning and immunological analysis using monoclonal antibodies. Clin Exp Allergy 21:675–681 [CrossRef]
    [Google Scholar]
  30. Sherman F., Fink G. R., Hicks J. B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Tarczynski M. C., Jensen R. G., Bohnert H. J. 1993; Stress protection of transgenic tobacco by production of the osmolyte mannitol. . Science 259:506–510
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Wang H. T., Rahaim P., Robbins P., Yocum R. R. 1994; Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol 176:7091–7095
    [Google Scholar]
  34. Wang S. Y., Le Tourneau D. 1972; Mannitol biosynthesis in Sclerotinia sclerotiorum. Arch Mikrobiol 81:91–99 [CrossRef]
    [Google Scholar]
  35. Wierenga R. K., Hol W. G. J. 1983; Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302:842–844 [CrossRef]
    [Google Scholar]
  36. Woloshuk C. P., Payne G. A. 1994; The alcohol dehydrogenase gene adh1 is induced in Aspergillus flavus grown on medium conducive to aflatoxin biosynthesis. . Appl Environ Microbiol 60:670–676
    [Google Scholar]
  37. Wong B., Brauer K. L., Tsai R. R., Jayasimhulu K. 1989; Increased amounts of the Aspergillus metabolite d-mannitol in tissues and serum of animals with experimental aspergillosis. J Infect Dis 160:95–103 [CrossRef]
    [Google Scholar]
  38. Wong B., Perfect J. R., Beggs S., Wright K. A. 1990; Production of the hexitol d-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun 58:1664–1670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2705
Loading
/content/journal/micro/10.1099/00221287-146-10-2705
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error