1887

Abstract

Mutant strains of defective in respiration have been reported to be unable to store glycogen, as revealed by the iodine-staining method. In this report, it is shown that in contrast to this claim, mitochondrial respiratory mutants accumulated even more glycogen than wild-type cells during the fermentative growth on glucose. However, as soon as glucose was exhausted in the medium, these mutants readily and completely mobilized their glycogen content, contrary to wild-type cells which only transiently degraded this polymer. The mobilization of glycogen was a specific trait resulting from a defect in mitochondrial function that could not be suppressed by mutations in the cAMP- and Pho85 protein kinase-dependent nutrient-sensing pathways, and by other mutations which favour glycogen synthesis. To account for this mobilization, it was found that respiration-defective cells not only contained a less active glycogen synthase, but also a more active glycogen phosphorylase. Since glucose 6-phosphate (Glc6P) is a potent inhibitor of the phosphorylation and an activator of the dephosphorylation processes of glycogen synthase and glycogen phosphorylase, it is suggested that the drop in Glc6P observed at the onset of glucose depletion in respiration-deficient cells triggers this rapid and sustained glycogen mobilization. It is also proposed that this degradation provides the energy for the viability of respiratory mutants in glucose-starved medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2685
2000-10-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462685a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2685&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U.. 1986; Methods in Enzymatic Analysis, 3rd edn.. Weinheim, Germany: Verlag Chemie;
    [Google Scholar]
  2. Cannon J. F., Pringle J. R., Fiechter A., Khalil M.. 1994; Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. . Genetics136:485–503
    [Google Scholar]
  3. Carrier E. B., McCleskey C. S.. 1962; Intracellular starch formation in Corynebacteria. J Bacteriol83:1029–1033
    [Google Scholar]
  4. Chester V. E.. 1964; Comparative studies on dissimilation of reserve carbohydrate in four strains of Saccharomyces cerevisiae. Biochem J92:318–323
    [Google Scholar]
  5. Chester V. E.. 1968; Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. . J Gen Microbiol51:49–56[CrossRef]
    [Google Scholar]
  6. Desfarges L., Durrens P., Juguelin H., Cassagne C., Bonneu M., Aigle M.. 1993; Yeast mutants affected in viability upon starvation have a modified phospholipid composition. . Yeast9:267–277[CrossRef]
    [Google Scholar]
  7. Farkas I., Hardy T. A., Goebl M. G., Roach P. J.. 1991; Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem266:15602–15607
    [Google Scholar]
  8. Filipak M., Drbot M. A., Ireland L. S., Singer R. A., Johnston G. C.. 1992; Mitochondrial DNA loss by yeast re-entry-mutant cells conditionally unable to proliferate from stationary phase. Curr Genet22:471–477[CrossRef]
    [Google Scholar]
  9. Fox T. D., Folley L. S., Mulero J. J., McMullin T. W., Thorness P. E., Hedin L. O., Costanzo M. C.. 1991; Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol194:149–165
    [Google Scholar]
  10. François J., Hers H. G.. 1988; The control of glycogen metabolism in yeast. II. A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract. Eur J Biochem174:561–567[CrossRef]
    [Google Scholar]
  11. François J., Villanueva M. E., Hers H. G.. 1988; The control of glycogen metabolism in yeast. I. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur J Biochem174:551–559[CrossRef]
    [Google Scholar]
  12. François J., Neves M. J., Hers H. G.. 1991; Control of trehalose metabolism in Saccharomyces cerevisiae. Evidences for a catabolite inactivation and repression of trehalose 6-phosphate synthase and trehalose 6-phosphate phosphatase. Yeast7:575–587[CrossRef]
    [Google Scholar]
  13. François J., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K.. 1992; GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J11:87–96
    [Google Scholar]
  14. François J., Blazquez M. A., Arino J., Gancedo C.. 1997; Storage carbohydrates in the yeast Saccharomyces cerevisiae. In Yeast Sugar Metabolism pp.285–311Edited by Zimmermann F. K., Entian K.-D.. Lancaster, PA: Technomics Publishing;
    [Google Scholar]
  15. Gonzalez B., François J., Renaud M.. 1997; A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. . Yeast13:1347–1356[CrossRef]
    [Google Scholar]
  16. Guthrie C., Fink G. R.. 1991; Guide to yeast genetics and molecular biology. Methods Enzymol194:3–37
    [Google Scholar]
  17. Hardy T. A., Roach P. J.. 1993; Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem268:23799–23805
    [Google Scholar]
  18. Hardy T. A., Huang D., Roach P. J.. 1994; Interactions between cAMP-dependent and SNF1 protein kinase in the control of glycogen accumulation in Saccharomyces cerevisiae. . J Biol Chem269:27907–27913
    [Google Scholar]
  19. Huang D., Farkas I., Roach P. J.. 1996; Pho85p, a cyclin-dependent protein kinase, and Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. . Mol Cell Biol16:4357–4365
    [Google Scholar]
  20. Huang D., Wilson W. A., Roach P. J.. 1997; Glc6P control of glycogen synthase phosphorylation in yeast. J Biol Chem272:22495–22501[CrossRef]
    [Google Scholar]
  21. Hwang P. K., Stugendreich S., Fletterick R. J.. 1989; Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol9:1659–1666
    [Google Scholar]
  22. Lillie S. H., Pringle J. R.. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol141:1384–1394
    [Google Scholar]
  23. Lin K., Hwang P. K., Fletterick R. J.. 1995; Mechanism of regulation in yeast glycogen phosphorylase. J Biol Chem270:26833–26839[CrossRef]
    [Google Scholar]
  24. Lin K., Rath V. L., Dai S. C., Fletterick R. J., Hwang P. K.. 1996; A protein phosphorylation switch at the conserved allosteric site in GP. . Science273:1539–1541[CrossRef]
    [Google Scholar]
  25. Manthey G. M., McEwen J. E.. 1995; The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. . EMBO J14:4031–4043
    [Google Scholar]
  26. Ni H.-T., Laporte D. C.. 1995; Response of a yeast glycogen synthase gene to stress. Mol Microbiol16:1197–1205[CrossRef]
    [Google Scholar]
  27. Parrou J. L., François J.. 1997; A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem248:186–188[CrossRef]
    [Google Scholar]
  28. Parrou J. L., Teste M. A., François J.. 1997; Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. . Microbiology143:1891–1900[CrossRef]
    [Google Scholar]
  29. Parrou J. L., Enjalbert B., Plourde L., Bauche A., Gonzalez B., François J.. 1999a; Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. . Yeast15:191–203[CrossRef]
    [Google Scholar]
  30. Parrou J. L., Enjalbert B., François J.. 1999b; STRE and cAMP-independent transcriptional induction of Saccharomyces cerevisiae GSY2 encoding glycogen synthase during diauxic growth on glucose. Yeast15:1471–1484[CrossRef]
    [Google Scholar]
  31. Rose M., Botstein D.. 1983; Construction and use of gene fusions lacZ (β-galactosidase) which are expressed in yeast. Methods Enzymol101:167–180
    [Google Scholar]
  32. Schiestl R. H., Gietz R. D.. 1989; High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier. Curr Genet16:339–346[CrossRef]
    [Google Scholar]
  33. Skroch-Stuart J., Frederick D., Varner C. M., Tatchell K.. 1994; The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol Cell Biol14:896–905
    [Google Scholar]
  34. Timblin B., Bergman L. W.. 1997; Elevated expression of stress response genes resulting from deletion of the PHO85 gene. Mol Microbiol26:981–990[CrossRef]
    [Google Scholar]
  35. Timblin B., Tatchell K., Bergman L. W.. 1996; Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics143:57–66
    [Google Scholar]
  36. Thompson-Jaeger S., François J., Gaughran J., Tatchell K.. 1991; Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics129:697–706
    [Google Scholar]
  37. Thon V. J., Vigneron-Lesens C., Marianne-Pepin T., Montreuil J., Decq A., Rachez C., Ball S. G., Cannon J. F.. 1992; Coordinate regulation of glycogen metabolism in yeast Saccharomyces cerevisiae. J Biol Chem267:15224–15228
    [Google Scholar]
  38. Tzagaloff A., Dieckmann C. L.. 1990; PET genes in Saccharomyces cerevisiae. Microbiol Rev54:211–225
    [Google Scholar]
  39. Wach A., Brachat A., Pölhmann R., Philippsen P.. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast10:1793–1808[CrossRef]
    [Google Scholar]
  40. Wek R. C., Cannon J. F., Dever T. E., Hinnebusch A. G.. 1992; Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol Cell Biol12:5700–5710
    [Google Scholar]
  41. Wilson W. A., Mahrenholz A. M., Roach P. J.. 1999; Substrate targeting of the yeast cyclin-dependent kinase Pho85p by cyclin Pcl10p. . Mol Cell Biol19:7020–7030
    [Google Scholar]
  42. Yang R., Chun K. T., Wek R. C.. 1998; Mitochondrial respiratory mutants in yeast inhibit glycogen accumulation by blocking activation of glycogen synthase. J Biol Chem273:31337–31344[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2685
Loading
/content/journal/micro/10.1099/00221287-146-10-2685
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error