Antisense PNA effects in are limited by the outer-membrane LPS layer Free

Abstract

Antisense peptide nucleic acids (PNAs) can inhibit gene expression and cell growth through sequence-specific RNA binding, and this opens possibilities for novel anti-infective agents and tools for microbial functional genomics. However, the cellular effects of PNAs are limited relative to effects in cell extracts, presumably because of cell barrier components such as the outer-membrane lipopolysaccharide (LPS) layer or drug efflux pumps, both of which function to exclude antibiotics and other foreign molecules. To evaluate the importance of such cellular factors on PNA effects, the authors developed a positive assay for antisense inhibition by targeting the operon repressor and compared PNA susceptibilities in mutant and wild-type by assessing Z induction. Strains with defective LPS (AS19 and D22) were more permeable to the antibiotic nitrocefin and more susceptible to PNA than the wild-type. Also, PNA potency was improved in wild-type cells grown in the presence of certain cell-wall-permeabilizing agents. In contrast, the activities of the Acr and Emr drug efflux pumps were not found to affect PNA susceptibility. The results show that the LPS layer is a major barrier against cell entry, but PNAs that can enter are likely to remain active inside cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2665
2000-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462665a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2665&mimeType=html&fmt=ahah

References

  1. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M., Hancock R. E. 1982; Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309 [CrossRef]
    [Google Scholar]
  2. Beja O., Bibi E. 1996; Functional expression of mouse Mdr1 in an outer membrane permeability mutant of Escherichia coli. Proc Natl Acad Sci U S A 93:5969–5974 [CrossRef]
    [Google Scholar]
  3. Blattner F. R., Plunkett G. 3rd, Bloch C. A.14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  4. Chunhong L., Peters A. S., Meredith E. L., Allman G. W., Savage P. B. 1998; Design and syntheses of potent sensitizers of gram-negative bacteria based on cholic acid scaffolding. J Am Chem Soc 120:2961–2962 [CrossRef]
    [Google Scholar]
  5. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E. 1995; Solid-phase synthesis of peptide nucleic acids. J Peptide Sci 3:175–183
    [Google Scholar]
  6. Demidov V., Potaman V. N., Frank-Kamenetskii M. D., Buchardt O., Egholm M., Nielsen P. E. 1994; Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1309–1313
    [Google Scholar]
  7. Ecker D. J., Freier S. M. 1998; PNA, antisense, and antimicrobials. Nat Biotechnol 6:332
    [Google Scholar]
  8. Egholm M., Buchardt O., Christensen L.7 other authors 1993; PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen bonding rules. Nature 365:566–568 [CrossRef]
    [Google Scholar]
  9. Gerberick G. F., Castric P. A. 1980; In vitro susceptibility of Pseudomonas aeruginosa to carbenicillin, glycine, and ethylenediaminetetraacetic acid combinations. Antimicrob Agents Chemother 17:732–735 [CrossRef]
    [Google Scholar]
  10. Good L., Nielsen P. E. 1998a; Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc Natl Acad Sci U S A 95:2073–2076 [CrossRef]
    [Google Scholar]
  11. Good L., Nielsen P. E. 1998b; Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16:355–358 [CrossRef]
    [Google Scholar]
  12. Hancock R. E. W. 1997; The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42 [CrossRef]
    [Google Scholar]
  13. Hanvey J. C., Peffer N. J., Bisi J. E.12 other authors 1992; Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485 [CrossRef]
    [Google Scholar]
  14. Helander I. M., Alakomi H. L., Latva-Kala K., Koski P. 1997; Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology 143:3193–3199 [CrossRef]
    [Google Scholar]
  15. Jensen K. K., Ørum H., Nielsen P. E., Nordén B. 1997; Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077 [CrossRef]
    [Google Scholar]
  16. Knudsen H., Nielsen P. E. 1996; Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res 24:494–500 [CrossRef]
    [Google Scholar]
  17. Lewis K. 1994; Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123 [CrossRef]
    [Google Scholar]
  18. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Motohashi N., Kurihara T., Kawasw M.7 other authors 1997; Drug resistance reversal, anti-mutagenicity and antiretroviral effect of phthalimido- and chloroethyl-phenothiazines. Anticancer Res 17:3537–3544
    [Google Scholar]
  20. Ng E. Y., Trucksis M., Hooper D. C. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 381345–1355
    [Google Scholar]
  21. Nielsen P. E., Haaima G. 1997; Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 96:73–78
    [Google Scholar]
  22. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. 1991; Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500 [CrossRef]
    [Google Scholar]
  23. Nikaido H. 1994; Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388 [CrossRef]
    [Google Scholar]
  24. Normark S., Boman H. G., Matsson E. 1969; Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J Bacteriol 97:1334–1342
    [Google Scholar]
  25. Norton J. C., Piatyczek J. A., Wright W. E., Shay J. W., Corey D. R. 1996; Inhibition of human telomerase activity by peptide nucleic acid. Nat Biotechnol 14:615–619 [CrossRef]
    [Google Scholar]
  26. Püschl A., Sforza S., Haaima G., Dahl O., Nielsen P. E. 1998; Peptide nucleic acids (PNAs) with a functional backbone. Tetrahedron Lett 39:4707–4710 [CrossRef]
    [Google Scholar]
  27. Sekiguchi M., Iida S. 1967; Mutants of Escherichia coli permeable to actinomycin. Proc Natl Acad Sci U S A 58:2315–2320 [CrossRef]
    [Google Scholar]
  28. Shafer W. M., Qu X., Waring A. J., Lehrer R. I. 1998; Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833 [CrossRef]
    [Google Scholar]
  29. Simons R. W., Kleckner N. 1988; Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22:567–600 [CrossRef]
    [Google Scholar]
  30. Sieradzki K., Tomasz A. 1997; Suppression of beta-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J Antimicrob Chemother 39:suppl A47–51 [CrossRef]
    [Google Scholar]
  31. Taylor R. W., Chinnery P. F., Turnbull D. M., Lightowlers R. N. 1997; Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15:212–215 [CrossRef]
    [Google Scholar]
  32. Vaara M., Jaakkola J. 1989; Sodium hexametaphosphate sensitizes Pseudomonas aeruginosa, several other species of Pseudomonas, and Escherichia coli to hydrophobic drugs. Antimicrob Agents Chemother 33:1741–1747 [CrossRef]
    [Google Scholar]
  33. Wittung P., Nielsen P. E., Buchard O., Egholm M., Nordén B. 1994; DNA-like double helix formed by peptide nucleic acid. Nature 368:561–563 [CrossRef]
    [Google Scholar]
  34. Zorzopulos J., de Long S., Chapman V., Kozloff L. M. 1989; Evidence for a net-like organization of lipopolysaccharide particles in the Escherichia coli outer membrane. FEMS Microbiol Lett 52:23–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2665
Loading
/content/journal/micro/10.1099/00221287-146-10-2665
Loading

Data & Media loading...

Most cited Most Cited RSS feed