T4 early promoter strength probed with unribosylated and ADP-ribosylated RNA polymerase: a mutation analysis Free

Abstract

The consensus sequence of T4 early promoters differs in length, sequence and degree of conservation from that of σ promoters. The enzyme interacting with these promoters, and transcribing the T4 genome, is native host RNA polymerase, which is increasingly modified by the phage-encoded ADP-ribosyltransferase, Alt. T4 early transcription is a very active process, possibly out-competing host transcription. The much stronger T4 promoters enhance viral transcription by a factor of at least two and the Alt-catalysed ADP-ribosylation of the host enzyme triggers an additional enhancement, again by a factor of about two. To address the question of which promoter elements contribute to the increasing transcriptional activity directed towards phage genes, the very strong promoter, Ptac, was sequentially mutated towards the sequence of the T4 early promoter consensus. Second, mutations were introduced into the highly conserved regions of the T4 early promoter, P8.1. The co-occurrence of the promoter-encoding plasmid pKWIII and vector pTKRI, which expresses Alt in , constitutes a test system that allows comparison of the transcriptional activities of phage and bacterial promoters, in the presence of native, or alternatively ADP-ribosylated RNA polymerase. Results reveal that T4 early promoters exhibit a bipartite structure, capable of strong interaction with both types of RNA polymerase. The −10, −16, −42 and −52 regions are important for transcript initiation with the native polymerase. To facilitate acceleration of transcription, the ADP-ribosylated enzyme requires not only the integrity of the −10, −16 and −35 regions, but also that of position −33, and even more importantly, maintenance of the upstream promoter element at position −42. The latter positions introduced into the Ptac promoter render this mutant promoter responsive to Alt-ADP-ribosylated RNA polymerase, like T4 early promoters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2643
2000-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462643a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2643&mimeType=html&fmt=ahah

References

  1. Aiyar A., Leis J. 1993; Modification of the megaprimer method for PCR mutagenesis: improved amplification of the final product. Biotechniques 14:366–368
    [Google Scholar]
  2. Barettino D., Feigenbutz M., Varcarcel R., Stunnenberg G. H. 1994; Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res 22:541–542 [CrossRef]
    [Google Scholar]
  3. Bertrand-Burggraf E., Dunand J., Fuchs R. P., Lefevre J. F. 1990; Kinetic studies of the modulation of ada promoter activity by upstream elements. . EMBO J 9:2265–2271
    [Google Scholar]
  4. Black W. B., Showe M. K., Steven A. C. 1994; Morphogenesis of the T4 head. In Molecular Biology of Bacteriophage T4 pp. 218–258Edited by Karam J. D., Drake J. W., Kreuzer K. N., Mosig G., Hall D. H., Eiserling F. A., Black L. W., Spicer E. K., Kutter E., Carlson K., Miller E. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Blattner F. R., Plunkett G. I., Bloch C. A.14 other authors 1997; The complete genome sequence of Escherichia coli K12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  6. de Boer H. A., Comstock L. J., Vasser M. 1983; The tac promotor: A functional hybrid derived from the trp and lac promotors. . Proc Natl Acad Sci U S A 80:21–25 [CrossRef]
    [Google Scholar]
  7. Busby S., Ebright R. H. 1994; Promoter structure, promoter recognition, and transcription activation in procaryotes. Cell 79:743–746
    [Google Scholar]
  8. Estrem S. T., Ross W., Gaal T., Chen Z. W., Niu W., Ebright R. H., Gourse R. L. 1999; Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev 13:2134–2147 [CrossRef]
    [Google Scholar]
  9. Gaal T., Barkei J., Dickson R. R., de Boer H. A., de Haseth P. L., Alavi H., Gourse R. L. 1989; Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. J Bacteriol 171:4852–4861
    [Google Scholar]
  10. Gartenberg M. R., Crothers D. M. 1991; Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. . J Mol Biol 219:217–230 [CrossRef]
    [Google Scholar]
  11. Goff C. G. 1974; Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase alpha polypeptides induced by bacteriophage T4 infection. . J Biol Chem 249:6181–6190
    [Google Scholar]
  12. Hengstenberg W., Morse M. L. 1969; An improved method of synthesis of O-nitrophenyl-β-d-galactopyranoside 6-phosphate. Carbohydr Res 10:463–465 [CrossRef]
    [Google Scholar]
  13. von Hippel P., Bear D. G., Morgan W. D., McSwiggen J. A. 1984; Protein–nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem 53:389–446 [CrossRef]
    [Google Scholar]
  14. Horvitz H. R. 1974; Bacteriophage T4 mutants deficient in alteration and modification of the Escherichia coli RNA polymerase. J Mol Biol 90:739–750 [CrossRef]
    [Google Scholar]
  15. Igarashi K., Fujita N., Ishihama A. 1991; Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. J Mol Biol 218:1–6 [CrossRef]
    [Google Scholar]
  16. Jensen P. R., Hammer K. 1998; The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. . Appl Environ Microbiol 64:82–87
    [Google Scholar]
  17. Koch T., Raudonikiene A., Wilkens K., Rüger W. 1995; Overexpression, purification, and characterization of the ADP-ribosyltransferase (gpAlt) of bacteriophage T4: ADP-ribosylation of E. coli RNA polymerase modulates T4 ‘early’ transcription. Gene Expr 4:253–264
    [Google Scholar]
  18. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. . Proc Natl Acad Sci U S A 82:488–492 [CrossRef]
    [Google Scholar]
  19. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. . Methods Enzymol 154:367–382
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Leaver R. H., Thomas T. R. 1977 Versuchsauswertung: Darstellung und Auswertung experimenteller Ergebnisse in Naturwissenschaft und Technik Braunschweig: Vieweg;
    [Google Scholar]
  22. Liebig H. D., Rüger W. 1989; Bacteriophage T4 early promoter regions. Consensus sequences of promoters and ribosome-binding sites. J Mol Biol 208:517–536 [CrossRef]
    [Google Scholar]
  23. Lozinski T., Adrych-Rozek K., Markiewicz W. T., Wierzchowski K. 1991; Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro. Nucleic Acids Res 19:2947–2953 [CrossRef]
    [Google Scholar]
  24. McClure W. R. 1985; Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204 [CrossRef]
    [Google Scholar]
  25. Moréra S., Imberty A., Aschke-Sonnenborn U., Rüger W., Freemont P. S. 1999; T4 phage β-glucosyltransferase: substrate binding and proposed catalytic mechanism. J Mol Biol 292:717–730 [CrossRef]
    [Google Scholar]
  26. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106 [CrossRef]
    [Google Scholar]
  27. Ovchinnikov Y. A., Lipkin V. M., Modyanov N. N., Chertov O. Y., Smirnov Y. V. 1977; Primary structure of alpha-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett 76:108–111 [CrossRef]
    [Google Scholar]
  28. Perez-Rueda E., Gralla J. D., Collado-Vides J. 1998; Genomic position analyses and the transcription machinery. J Mol Biol 275:165–170 [CrossRef]
    [Google Scholar]
  29. Rohrer H., Zillig W., Mailhammer R. 1975; ADP-ribosylation of DNA-dependent RNA polymerase of Escherichia coli by an NAD+:protein ADP-ribosyltransferase from bacteriophage T4. Eur J Biochem 60:227–238 [CrossRef]
    [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  31. Salgado H., Santos A., Garza-Ramos U., van Helden J., Diaz E., Collado-Vides J. 1999; RegulonDB (version 2.0): a database on transcriptional regulation in Escherichia coli. . Nucleic Acids Res 27:59–60 [CrossRef]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  34. Schneider T. D., Stormo G. D., Gold L., Ehrenfeucht A. 1986; Information content of binding sites on nucleotide sequences. J Mol Biol 188:415–431 [CrossRef]
    [Google Scholar]
  35. Siebenlist U., Simpson R. B., Gilbert W. 1980; E. coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281 [CrossRef]
    [Google Scholar]
  36. Szoke P. A., Allen T. L., deHaseth P. L. 1987; Promoter recognition by Escherichia coli RNA polymerase: effects of base substitutions in the −10 and −35 regions. Biochemistry 26:6188–6194 [CrossRef]
    [Google Scholar]
  37. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [CrossRef]
    [Google Scholar]
  38. Voskuil M. I., Chambliss G. H. 1998; The −16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res 26:3584–3590 [CrossRef]
    [Google Scholar]
  39. Vrielink A., Rüger W., Driessen H. P., Freemont P. S. 1994; Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13:3413–3422
    [Google Scholar]
  40. Wilkens K., Rüger W. 1994; Transcription from early promotors. In Molecular Biology of Bacteriophage T4 pp. 132–141Edited by Karam J. D., Drake J. W., Kreuzer K. N., Mosig G., Hall D. H., Eiserling F. A., Black L. W., Spicer E. K., Kutter E., Carlson K., Miller E. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Wilkens K., Rüger W. 1996; Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35:108–120 [CrossRef]
    [Google Scholar]
  42. Wilkens K., Tiemann B., Bazan F., Rüger W. 1997; ADP ribosylation and early transcription regulation by bacteriophage T4. . Adv Exp Med Biol 419:71–82
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  44. Youderian P., Bouvier S., Susskind M. M. 1982; Sequence determinants of promoter activity. Cell 30:843–853 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2643
Loading
/content/journal/micro/10.1099/00221287-146-10-2643
Loading

Data & Media loading...

Most cited Most Cited RSS feed