Secreted products of a nonmucoid strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis Free

Abstract

A nonmucoid clinical isolate of , strain 808, elaborated ATP-dependent and ATP-independent types of cytotoxic factors in the growth medium. These cytotoxic factors, active against macrophages, were secreted during the exponential phase of growth in a complex medium. Commensurate with the appearance of the cytotoxic activities in the cell-free growth medium, several ATP-utilizing enzymic activities, such as adenylate kinase, nucleoside diphosphate kinase and 5′-nucleotidase (ATPase and/or phosphatase), were detected in the medium. These ATP-utilizing enzymes are believed to convert external ATP, presumably effluxed from macrophages, to various adenine nucleotides, which then activate purinergic receptors such as P2Z, leading to enhanced macrophage cell death. Pretreatment of macrophages with periodate-oxidized ATP (oATP), which is an irreversible inhibitor of P2Z receptor activation, prevented subsequent ATP-induced macrophage cell death. A second type of cytotoxic factor(s) operated in an ATP-independent manner such that it triggered activation of apoptotic processes in macrophages, leading to proteolytic conversion of procaspase-3 to active caspase-3. This cytotoxic factor(s) did not appear to act on procaspase-3 present in macrophage cytosolic extracts. Intact macrophages, when exposed to the cytotoxic factor(s) for 6–16 h, underwent apoptosis and demonstrated the presence of active caspase-3 in their cytosolic extracts. Interestingly, two redox proteins, azurin and cytochrome , were detected in the cytotoxic preparation. When cell-line-derived or peritoneal macrophages or mast cells were incubated overnight with Q-Sepharose column flow-through fraction or with a mixture of azurin and cytochrome , they underwent extensive cell death due to induction of apoptosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2521
2000-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462521a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2521&mimeType=html&fmt=ahah

References

  1. Buommino E., Morelli F., Metafora S., Rossano F., Perfeto B., Baroni A., Tufano M. A. 1999; Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun 67:4794–4800
    [Google Scholar]
  2. Coburn J., Frank D. W. 1999; Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 67:3151–3154
    [Google Scholar]
  3. Dacheux D., Attree I., Schneider C., Toussaint B. 1999; Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infect Immun 67:6164–6167
    [Google Scholar]
  4. Di Virgilio F. 1995; The P2Z purino receptor: an intriguing role in immunity, inflammation and cell death. Immunol Today 16:524–528 [CrossRef]
    [Google Scholar]
  5. Dubyak G. R., El-Moatassim C. 1993; Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606
    [Google Scholar]
  6. Ellerby H. M., Martin S. J., Ellerby L. M.7 other authors 1997; Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. Neuroscience 17:6165–6178
    [Google Scholar]
  7. Ferrari D., Chiozzi P., Falzoni S., Hanau S., Di Virgilio F. 1997; Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582 [CrossRef]
    [Google Scholar]
  8. Ferrari D., Los M., Baure M. K. A., Vandenabeele P., Weselborg S., Schulze-Osthoff K. 1999; P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett 447:71–75 [CrossRef]
    [Google Scholar]
  9. Frank D. W. 1997; The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26:621–629 [CrossRef]
    [Google Scholar]
  10. Goodhew C. F., Brown K. R., Pettigrew G. W. 1986; Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim Biphys Acta 852:288–294 [CrossRef]
    [Google Scholar]
  11. Green D. R., Reed J. C. 1998; Mitochondria and apoptosis. Science 281:1309–1311 [CrossRef]
    [Google Scholar]
  12. Hauser A. R., Engel J. N. 1999; Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67:5530–5537
    [Google Scholar]
  13. Hersh D., Monack D. M., Smith M. R., Ghori N., Falkow S., Zychlinsky A. 1999; The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401 [CrossRef]
    [Google Scholar]
  14. Hilbi H., Moss J. E., Hersh D.7 other authors 1998; Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900 [CrossRef]
    [Google Scholar]
  15. Lammas D. A., Stober C., Harvey C. J., Kendrick N., Panchalingan S., Kumararatne D. S. 1997; ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z (P2X7) receptors. Immunity 7:433–444 [CrossRef]
    [Google Scholar]
  16. Melnikov A., Zaborina O., Dhiman N., Prabhakar B. S., Chakrabarty A. M., Hendrickson W. 2000; Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Mol Microbiol 36:1481–1493
    [Google Scholar]
  17. Murgia M., Hanau S., Pizzo P., Rippa M., Di Virgilio F. 1993; Oxidized ATP: an irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268:8199–8203
    [Google Scholar]
  18. Punj V., Zaborina O., Dhiman N., Falzari K., Bagdasarian M., Chakrabarty A. M. 2000; Phagocytic cell killing mediated by secreted cytotoxic factors of Vibrio cholerae. Infect Immun 68:4930–4937 [CrossRef]
    [Google Scholar]
  19. Reed J. C. 1997; Cytochrome c: can’t live with it – can’t live without it. Cell 91:559–562 [CrossRef]
    [Google Scholar]
  20. Salvesen G. S., Dixit V. M. 1997; Caspases: intracellular signaling by proteolysis. Cell 91:443–446 [CrossRef]
    [Google Scholar]
  21. Sikora A., Liu J., Brosnan C., Buell G., Chessel I., Bloom B. R. 1999; Purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 163:558–561
    [Google Scholar]
  22. Stennicke H. R., Salvesen G. S. 1999; Caspases: preparation and characterization. Comp Methods Enzymol 17:313–319 [CrossRef]
    [Google Scholar]
  23. Stennicke H. R., Juergensmeiler J. M., Shin H.11 other authors 1998; Procaspase-3 is a major target of caspase-8. J Biol Chem 273:27084–27090 [CrossRef]
    [Google Scholar]
  24. Vallis A. J., Yahr T. L., Barbieri J. T., Frank D. W. 1999; Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 67:914–920
    [Google Scholar]
  25. Van de Kamp M., Silverstrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. 1990; Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome c 551 and nitrite reductase. Eur J Biochem 194:109–118 [CrossRef]
    [Google Scholar]
  26. Vijgenboom E., Busch J. E., Canters G. W. 1997; In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of RpoS and ANR. Microbiology 143:2853–2863 [CrossRef]
    [Google Scholar]
  27. Zaborina O., Misra N., Kostal J., Kamath S., Kapatral V., El-Azami El-Idrissi M., Prabhakar B. S., Chakrabarty A. M. 1999; P2Z-independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 67:5231–5242
    [Google Scholar]
  28. Zou H., Henzel W. J., Liu X., Lutschg A., Wang X. 1997; Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413 [CrossRef]
    [Google Scholar]
  29. Zou H., Li Y., Liu X., Wang X. 1999; An Apaf-1·cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2521
Loading
/content/journal/micro/10.1099/00221287-146-10-2521
Loading

Data & Media loading...

Most cited Most Cited RSS feed