1887

Abstract

It was previously shown that most strains contain one or more plasmids with cross-hybridizing replication regions and other areas of homology, and these plasmids were designated the pPT23A-like family. The majority of these plasmids encode genes conferring epiphytic fitness or resistance to antibacterial compounds and those investigated in this study are essential for pathogenicity or increased virulence. The phylogeny of 14 pPT23A-like plasmids from five pathovars was studied by comparing a fragment of the sequence of their genes (encoding a replicase essential for replication). In the phylogenetic tree obtained, four groups (≤888% identity between their members) could be identified. The first group contained the plasmids from three pv. strains, a pv. strain and five out of the seven pv. strains, with identity ranging between 888 and 100%. The clustering of the pv. strains did not reflect host specialization or previously reported phylogenetic relationships. The second group contained the plasmids from two strains of pv. and pv. (955% identity), and it also included the previously sequenced replicon of a pathogenicity plasmid from pv. . The plasmids from the remaining two pv. strains were distantly related to the other plasmid sequences. Hybridization experiments using different genes or transposable elements previously described as plasmid-borne in , showed that the gene content of highly related plasmids could be dissimilar, suggesting the occurrence of major plasmid reorganizations. Additionally, the phylogeny of the different native plasmids did not always correlate with the phylogeny of their harbouring strains, as determined by the analysis of extragenic repetitive consensus (ERIC) and arbitrarily primed PCR (AP-PCR) products. Collectively, these results suggest that pPT23A-like plasmids were, in most cases, acquired early during evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2375
2000-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462375a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2375&mimeType=html&fmt=ahah

References

  1. Beattie, G. A. & Lindow, S. E. ( 1995; ). The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33, 145-172.[CrossRef]
    [Google Scholar]
  2. Bender, C. & Cooksey, D. ( 1986; ). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165, 534-541.
    [Google Scholar]
  3. Bender, C. L., Alarcón-Chaidez, F. & Gross, D. C. ( 1999; ). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63, 266-292.
    [Google Scholar]
  4. Björklöf, K., Suoniemi, A., Haahtela, K. & Romantschuk, M. ( 1995; ). High frequency of conjugation versus plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiology 141, 2719-2727.[CrossRef]
    [Google Scholar]
  5. Burgos, P. A., Velazquez, E. & Toro, N. ( 1996; ). Identification and distribution of plasmid-type A replicator region in rhizobia. Mol Plant–Microbe Interact 9, 843-849.[CrossRef]
    [Google Scholar]
  6. Burr, T. J., Norelli, J. L., Katz, B., Wilcox, W. F. & Hoying, S. A. ( 1988; ). Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid. Phytopathology 78, 410-413.[CrossRef]
    [Google Scholar]
  7. Comai, L. & Kosuge, T. ( 1980; ). Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143, 950-957.
    [Google Scholar]
  8. Crouse, G. F., Frischauf, A. & Lehrach, H. ( 1983; ). An integrated and simplified approach for cloning into plasmids and single-stranded phages. Methods Enzymol 101, 78-89.
    [Google Scholar]
  9. Cuppels, D. A. ( 1986; ). Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51, 323-327.
    [Google Scholar]
  10. Cuppels, D. A. & Ainsworth, T. ( 1995; ). Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine. Appl Environ Microbiol 61, 3530-3536.
    [Google Scholar]
  11. Curiale, M. S. & Mills, D. ( 1983; ). Molecular relatedness among cryptic plasmids in Pseudomonas syringae pv. glycinea. Phytopathology 73, 1440-1444.[CrossRef]
    [Google Scholar]
  12. Denny, T. P. ( 1988; ). Phenotypic diversity in Pseudomonas syringae pv. tomato. J Gen Microbiol 134, 1939-1948.
    [Google Scholar]
  13. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. & Grimont, P. A. D. ( 1999; ). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49, 469-478.[CrossRef]
    [Google Scholar]
  14. Gibbon, M. J., Sesma, A., Canal, A., Wood, J. R., Hidalgo, E., Brown, J., Vivian, A. & Murillo, J. ( 1999; ). Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiology 145, 325-334.[CrossRef]
    [Google Scholar]
  15. Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A. & Dessaux, Y. ( 1998; ). Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant–Microbe Interact 11, 156-162.[CrossRef]
    [Google Scholar]
  16. Hancock, J. M. ( 1995; ). The contribution of DNA slippage to eucaryotic nuclear 18S rRNA evolution. J Mol Evol 40, 629-639.[CrossRef]
    [Google Scholar]
  17. Hanekamp, T., Kobayashi, D., Hayes, S. & Stayton, M. M. ( 1997; ). Avirulence gene D of Pseudomonas syringae pv. tomato may have undergone horizontal gene transfer. FEBS Lett 415, 40-44.[CrossRef]
    [Google Scholar]
  18. Hendson, M., Hildebrand, D. C. & Schroth, M. N. ( 1992; ). Relatedness of Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. anthirrini. J Appl Bacteriol 73, 455-464.[CrossRef]
    [Google Scholar]
  19. Jackson, R. W., Athanassopoulos, E., Tsiamis, G., Mansfield, J. W., Sesma, A., Arnold, D. L., Gibbon, M. J., Murillo, J., Taylor, J. D. & Vivian, A. ( 1999; ). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A 96, 10875-10880.[CrossRef]
    [Google Scholar]
  20. Jobling, M. G. & Holmes, R. K. ( 1990; ). Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZα and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18, 5315-5316.[CrossRef]
    [Google Scholar]
  21. Kearney, B. & Staskawicz, B. J. ( 1990; ). Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346, 385-386.[CrossRef]
    [Google Scholar]
  22. Keen, N. T., Shen, H. & Cooksey, D. A. ( 1992; ). Introduction of DNA into plant pathogenic bacteria. In Molecular Plant Pathology: A Practical Approach , pp. 45-50. Edited by S. J. Gurr, M. J. McPherson & D. J. Bowles. Oxford:IRL Press.
  23. Kim, J. F., Charkowski, A. O., Alfano, J. R., Collmer, A. & Beer, S. V. ( 1998; ). Transposable elements and bacteriophage sequences flanking Pseudomonas syringae avirulence genes. Mol Plant–Microbe Interact 11, 1247-1252.[CrossRef]
    [Google Scholar]
  24. King, E. O., Ward, N. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301-307.
    [Google Scholar]
  25. King, G. J. ( 1989; ). Plasmid analysis and variation in Pseudomonas syringae. J Appl Bacteriol 67, 489-496.[CrossRef]
    [Google Scholar]
  26. Kobayashi, D. Y., Tamaki, S. J. & Keen, N. T. ( 1990; ). Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 3, 94-102.[CrossRef]
    [Google Scholar]
  27. Legard, D. E., Aquadro, C. F. & Hunter, J. E. ( 1993; ). DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism. Appl Environ Microbiol 59, 4180-4188.
    [Google Scholar]
  28. Lorang, J. M., Shen, H., Kobayashi, D., Cooksey, D. & Keen, N. T. ( 1994; ). avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol Plant–Microbe Interact 7, 508-515.[CrossRef]
    [Google Scholar]
  29. McManus, P. S. & Jones, A. L. ( 1995; ). Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology 85, 1547-1553.[CrossRef]
    [Google Scholar]
  30. Mitchell, R. E. ( 1982; ). Coronatine production by some phytopathogenic pseudomonads. Physiol Plant Pathol 20, 83-89.[CrossRef]
    [Google Scholar]
  31. Murillo, J. & Keen, N. T. ( 1994; ). Two native plasmids of Pseudomonas syringae pathovar tomato strain PT23 share a large amount of repeated DNA, including replication sequences. Mol Microbiol 12, 941-950.[CrossRef]
    [Google Scholar]
  32. Murillo, J., Shen, H., Gerhold, D., Sharma, A. K., Cooksey, D. A. & Keen, N. T. ( 1994; ). Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato. Plasmid 31, 275-287.[CrossRef]
    [Google Scholar]
  33. Otten, L., de Ruffray, P., Momol, E. A., Momol, M. T. & Burr, T. J. ( 1996; ). Phylogenetic relationships between Agrobacterium vitis isolates and their Ti plasmids. Mol Plant–Microbe Interact 9, 782-786.[CrossRef]
    [Google Scholar]
  34. Rangaswamy, V., Mitchell, R., Ullrich, M. & Bender, C. ( 1998; ). Analysis of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine. J Bacteriol 180, 3330-3338.
    [Google Scholar]
  35. Ritter, C. & Dangl, J. L. ( 1995; ). The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant–Microbe Interact 8, 444-453.[CrossRef]
    [Google Scholar]
  36. Romantschuk, M., Richter, G. Y., Mukhopadhyay, P. & Mills, D. ( 1991; ). IS801, an insertion sequence element isolated from Pseudomonas syringae pathovar phaseolicola. Mol Microbiol 5, 617-622.[CrossRef]
    [Google Scholar]
  37. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Sato, M. ( 1988; ). In planta transfer of the gene(s) for virulence between isolates of Pseudomonas syringae pv. atropurpurea. Ann Phytopathol Soc Jpn 54, 20-24.[CrossRef]
    [Google Scholar]
  40. Saunier, M., Malandrin, L. & Samson, R. ( 1996; ). Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups. Appl Environ Microbiol 62, 2360-2374.
    [Google Scholar]
  41. Sawada, H., Suzuki, F., Matsuda, I. & Saitou, N. ( 1999; ). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49, 627-644.[CrossRef]
    [Google Scholar]
  42. Sesma, A. (2000). Characterization of native plasmids and virulence genes in the phytopathogen Pseudomonas syringae. PhD thesis, Universidad Pública de Navarra, Pamplona, Spain.
  43. Sesma, A., Sundin, G. & Murillo, J. ( 1998; ). Closely related replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl Environ Microbiol 64, 3948-3953.
    [Google Scholar]
  44. Sundin, G. W. & Bender, C. L. ( 1993; ). Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 59, 1018-1024.
    [Google Scholar]
  45. Sundin, G. W. & Bender, C. L. ( 1996; ). Molecular analysis of closely related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid 35, 98-107.[CrossRef]
    [Google Scholar]
  46. Sundin, G. W. & Murillo, J. ( 1999; ). Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ Microbiol 1, 75-88.[CrossRef]
    [Google Scholar]
  47. Sundin, G. W., Jones, A. L. & Fulbright, D. W. ( 1989; ). Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology 79, 861-865.[CrossRef]
    [Google Scholar]
  48. Sundin, G. W., Demezas, D. H. & Bender, C. L. ( 1994; ). Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60, 4421-4431.
    [Google Scholar]
  49. Sundin, G. W., Kidambi, S. P., Ullrich, M. & Bender, C. L. ( 1996; ). Resistance to ultraviolet light in Pseudomonas syringae: sequence and functional analysis of the plasmid-encoded rulAB genes. Gene 177, 77-81.[CrossRef]
    [Google Scholar]
  50. Swarup, S., De Feyter, R., Brlansky, R. H. & Gabriel, D. W. ( 1991; ). A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 81, 802-809.[CrossRef]
    [Google Scholar]
  51. Tauch, A., Krieft, S., Kalinowski, J. & Pühler, A. ( 2000; ). The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263, 1-11.[CrossRef]
    [Google Scholar]
  52. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882.[CrossRef]
    [Google Scholar]
  53. Tsiamis, G., Mansfield, J. W., Hockenhull, R. & 8 other authors ( 2000; ). Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19, 3204–3214.[CrossRef]
    [Google Scholar]
  54. Turner, S. L., Rigottier-Gois, L., Power, R. S., Amarger, N. & Young, J. P. ( 1996; ). Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum. Microbiology 142, 1705-1713.[CrossRef]
    [Google Scholar]
  55. Vivian, A., Gibbon, M. J. & Murillo, J. ( 1997; ). The molecular genetics of specificity determinants in plant pathogenic bacteria. In The Gene-for-Gene Relationship in Plant Parasite Interactions , pp. 293-328. Edited by I. R. Crute, E. B. Holub & J. J. Burdon. Wallingford:CABI.
  56. Wernegreen, J. J., Harding, E. E. & Riley, M. A. ( 1997; ). Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci U S A 94, 5483-5488.[CrossRef]
    [Google Scholar]
  57. Wiebe, W. L. & Campbell, R. N. ( 1993; ). Characterization of Pseudomonas syringae pv. maculicola and comparison with P. s. pv. tomato. Plant Dis 77, 414-419.[CrossRef]
    [Google Scholar]
  58. Yang, Y., Yuan, Q. & Gabriel, D. W. ( 1996; ). Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant–Microbe Interact 8, 627-631.
    [Google Scholar]
  59. Young, J. & Wexler, M. ( 1988; ). Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol 134, 2731-2739.
    [Google Scholar]
  60. Young, J. M., Takikawa, Y., Gardan, L. & Stead, D. E. ( 1992; ). Changing concepts in the taxonomy of plant pathogenic bacteria. Annu Rev Phytopathol 30, 67-105.[CrossRef]
    [Google Scholar]
  61. Young, J. M., Saddler, G. S., Takikawa, Y., De Boer, S. H., Vauterin, L., Gvozdyak, R. I. & Stead, D. E. ( 1996; ). Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol 75, 721-763.
    [Google Scholar]
  62. Yucel, I., Boyd, C., Debnam, Q. & Keen, N. T. ( 1994; ). Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae. Mol Plant–Microbe Interact 7, 131-139.[CrossRef]
    [Google Scholar]
  63. Zhou, C., Yang, Y. & Jong, A. Y. ( 1990; ). Miniprep in ten minutes. BioTechniques 8, 172-173.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2375
Loading
/content/journal/micro/10.1099/00221287-146-10-2375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error