1887
Preview this article:
Zoom in
Zoomout

The causes of diversity, Page 1 of 1

| /docserver/preview/fulltext/micro/146/10/1462345a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2345
2000-10-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462345a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2345&mimeType=html&fmt=ahah

References

  1. Abrams P. A.. 1987; Alternative models of character displacement and niche shift. 2. Displacement when there is competition for a single resource. Am Nat130:271–282[CrossRef]
    [Google Scholar]
  2. Alfano J. R., Charkowski A. O., Deng W.-L., Badel J. L., Petnicki-Ocwieja T., van Dijk K., Collmer A.. 2000; The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA97:4856–4861[CrossRef]
    [Google Scholar]
  3. Atwood K. C., Schneider L. K., Ryan F. J.. 1951; Selective mechanisms in bacteria. Cold Spring Harbor Symp Quant Biol16:345–354[CrossRef]
    [Google Scholar]
  4. Bell G.. 1997; Selection: the Mechanism of Evolution New York: Chapman & Hall;
    [Google Scholar]
  5. Darwin C.. 1859; The Origin of Species London: Murray;
    [Google Scholar]
  6. De Ita M. E., Marsch-Moreno R., Guzmán P., Alvarez-Morales A.. 1998; Physical map of the chromosome of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola. Microbiology144:493–501[CrossRef]
    [Google Scholar]
  7. Doolittle W. F.. 1999; Phylogenetic classification and the universal tree. Science284:2124–2129[CrossRef]
    [Google Scholar]
  8. Friedberg E., Walker G., Siede W.. 1995; DNA Repair and Mutagenesis Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gause G. F.. 1934; The Struggle for Existence Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  10. Ginard M., Lalucat J., Tummler B., Romling U.. 1997; Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol47:132–143[CrossRef]
    [Google Scholar]
  11. Govan J. R., Deretic V.. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev60:539–574
    [Google Scholar]
  12. Grothues D., Koopmann U., von der Hardt H., Tummler B.. 1988; Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol26:1973–1977
    [Google Scholar]
  13. Haldane J. B. S.. 1932; The Causes of Evolution London: Longmans & Green;
    [Google Scholar]
  14. Hardin G.. 1960; The competitive exclusion principle. . Science131:1292–1997[CrossRef]
    [Google Scholar]
  15. Haubold B., Rainey P. B.. 1996; Genetic and ecotypic structure of a fluorescent Pseudomonas population. . Mol Ecol5:747–761[CrossRef]
    [Google Scholar]
  16. Hoch J. A.. 1995; Two-Component Signal Transduction Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Jablonka E., Lamb M. J., Avital E.. 1998; ‘Lamarckian’ mechanisms in Darwinian evolution. Trends Ecol Evol13:206–210[CrossRef]
    [Google Scholar]
  18. Jackson R. W., Athanassopoulos E., Tsiamis G..7 other authors 1999; Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci USA96:10875–10880[CrossRef]
    [Google Scholar]
  19. Kassen R., Buckling A., Bell G., Rainey P. B.. 2000; Diversity peaks at intermediate productivity in a laboratory microcosm. Nature406:508–512[CrossRef]
    [Google Scholar]
  20. Kiewitz C., Tümmler B.. 2000; Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution. J Bacteriol182:3125–3135[CrossRef]
    [Google Scholar]
  21. Kiewitz C., Larbig K., Klockgether J., Weinel C., Tümmler B.. 2000; Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNALys gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology146:2365–2373
    [Google Scholar]
  22. Kirschner M., Gerhart J.. 1998; Evolvability. Proc Natl Acad Sci USA95:8420–8427[CrossRef]
    [Google Scholar]
  23. Lawrence J. G.. 1999; Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev9:642–648[CrossRef]
    [Google Scholar]
  24. Leigh E. G.. 1973; The evolution of mutation rates. Genetics73:(suppl)1–18
    [Google Scholar]
  25. Lenski R. E., Mongold J. A., Sniegowski P. D., Travisano M., Vasi F., Gerrish P. J., Schmidt T. M.. 1998; Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? . Antonie Leeuwenhoek73:35–47[CrossRef]
    [Google Scholar]
  26. Levin B. R., Bergstrom C. T.. 2000; Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. . Proc Natl Acad Sci USA97:6981–6985[CrossRef]
    [Google Scholar]
  27. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E.. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol4:24–33[CrossRef]
    [Google Scholar]
  28. Ochman H., Lawrence J. G., Groisman E. A.. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature405:299–304[CrossRef]
    [Google Scholar]
  29. Oliver A., Canton R., Campo P., Baquero F., Blazquez J.. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. . Science288:1251–1254[CrossRef]
    [Google Scholar]
  30. Palleroni N. J.. 1993; Pseudomonas classification: a new case history in the taxonomy of gram-negative bacteria. Antonie Leeuwenhoek64:231–251
    [Google Scholar]
  31. Rainey P. B., Bailey M. J.. 1996; Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. . Mol Microbiol19:521–533[CrossRef]
    [Google Scholar]
  32. Rainey P. B., Moxon E. R.. 2000; When being hyper keeps you fit. Science288:1186–1187[CrossRef]
    [Google Scholar]
  33. Rainey P. B., Travisano M.. 1998; Adaptive radiation in a heterogeneous environment. Nature394:69–72[CrossRef]
    [Google Scholar]
  34. Rainey P. B., Bailey M. J., Thompson I. P.. 1994; Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology140:2315–2331[CrossRef]
    [Google Scholar]
  35. Rainey P. B., Buckling A., Kassen R., Travisano M.. 2000; The emergence and maintenance of diversity: insights from experimental bacterial populations. . Trends Ecol Evol15:243–247[CrossRef]
    [Google Scholar]
  36. Ravatn R., Studer S., Zehnder A. J. B., van der Meer J. R.. 1998; Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol180:5505–5514
    [Google Scholar]
  37. Redfield R. J.. 1993; Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J Hered84:400–404
    [Google Scholar]
  38. Rosenzweig M. L.. 1995; Species Diversity in Space and Time Cambridge: Cambridge University Press;
    [Google Scholar]
  39. Rosenzweig R. F., Sharp R. R., Treves D. S., Adams J.. 1994; Microbial evolution in a simple unstructured environment – genetic differentiation in Escherichia coli. Genetics137:903–917
    [Google Scholar]
  40. Rozen D. E., Lenski R. E.. 2000; Long-term experimental evolution in Escherichia coli: dynamics of a balanced polymorphism. Am Nat155:24–35[CrossRef]
    [Google Scholar]
  41. Schluter D.. 1994; Experimental evidence that competition promotes divergence in adaptive radiation. Science266:798–801[CrossRef]
    [Google Scholar]
  42. Schmidt K. D., Tummler B., Romling U.. 1996; Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol178:85–93
    [Google Scholar]
  43. Sesma A., Sundin G. W., Murillo J.. 2000; Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiology146:2375–2384
    [Google Scholar]
  44. Sniegowski P. D., Gerrish P. J., Johnson T., Shaver A.. 2000; The evolution of mutation rates: separating causes and consequences. Bioessays22: in press
    [Google Scholar]
  45. Spangenberg C., Montie T. C., Tummler B.. 1998; Structural and functional implications of sequence diversity of Pseudomonas aeruginosa genes oriC, ampC and fliC. Electrophoresis19:545–550[CrossRef]
    [Google Scholar]
  46. Stanier R. Y., Palleroni N. J., Doudoroff M.. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol43:159–271[CrossRef]
    [Google Scholar]
  47. Thomas C. M.. 2000; The Horizontal Gene Pool Amsterdam: Harwood Academic Publishers;
    [Google Scholar]
  48. Treves D. S., Manning S., Adams J.. 1998; Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol15:789–797[CrossRef]
    [Google Scholar]
  49. Turner P. E., Souza V., Lenski R. E.. 1996; Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. . Ecology77:2119–2129[CrossRef]
    [Google Scholar]
  50. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S.. 2000; Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. . Microbiology146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2345
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error