1887

Abstract

The growth and protein export defects (Ts) strains can be suppressed by the CsaA protein of . The present studies indicate that this effect can be attributed to chaperone-like activities of CsaA. First, CsaA stimulated protein export in , and mutant strains of . Second, CsaA suppressed the growth defects of , and mutants of . Third, and most importantly, CsaA exhibited chaperone-like properties by stimulating the reactivation of heat-denatured firefly luciferase in , , and mutant strains of , and by preventing the aggregation of heat-denatured luciferase . Thus, it seems that CsaA suppresses the growth and secretion defects of (Ts) strains either by improving the translocation competence of exported pre-proteins, thereby making them better substrates for mutant SecA proteins, or by stimulating the translocation activity of mutant SecA proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-77
2000-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460077a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-77&mimeType=html&fmt=ahah

References

  1. Altman E., Kumamoto C. A., Emr S. D. 1991; Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J 10:239–245
    [Google Scholar]
  2. Ang D., Chandrasekhar G. N., Zylicz M., Georgopoulos C. 1986; Escherichia coli grpE gene codes for heat shock protein B25.3, essential for both lambda DNA replication at all temperatures and host growth at high temperature. J Bacteriol 167:25–29
    [Google Scholar]
  3. den Blaauwen T., Driessen A. J. M. 1996; Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165:1–8 [CrossRef]
    [Google Scholar]
  4. Bolhuis A., Sorokin A., Azevedo V., Ehrlich S. D., Braun P. G., de Jong A., Venema G., Bron S., van Dijl J. M. 1996; Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol 22:605–618 [CrossRef]
    [Google Scholar]
  5. Bolhuis A., Broekhuizen C. P., Sorokin A., van Roosmalen M. L., Venema G., Bron S., Quax W. J., van Dijl J. M. 1998; SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273:21217–21224 [CrossRef]
    [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Betlach M. C., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. I Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93 [CrossRef]
    [Google Scholar]
  7. Brickman E. R., Oliver D. B., Garwin J. L., Kumamoto C. A., Beckwith J. 1984; The use of extragenic suppressors to define genes involved in protein export in Escherichia coli. Mol Gen Genet 196:24–27 [CrossRef]
    [Google Scholar]
  8. de Cock H., Randall L. L. 1998; Correlation between requirement for SecA during export and folding properties of precursor polypeptides. Mol Microbiol 27:469–476 [CrossRef]
    [Google Scholar]
  9. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Science 6:1129–1138 [CrossRef]
    [Google Scholar]
  10. Danese P. N., Murphy C. K., Silhavy T. J. 1995; Multicopy suppression of cold-sensitive sec mutations in Escherichia coli. J Bacteriol 177:4969–4973
    [Google Scholar]
  11. De Gier J. W., Valent Q. A., von Heijne G., Luirink J. 1997; The E. coli SRP: preferences of a targeting factor. FEBS Lett 408:1–4 [CrossRef]
    [Google Scholar]
  12. van der Does C., Manting E. H., Kaufmann A., Lutz M., Driessen A. J. M. 1998; Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37:201–210 [CrossRef]
    [Google Scholar]
  13. van Dijl J. M., de Jong A., Smith H., Bron S., Venema G. 1991; Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol Gen Genet 227:40–48 [CrossRef]
    [Google Scholar]
  14. van Dijl J. M., de Jong A., Vehmaanperä J., Venema G., Bron S. 1992; Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828
    [Google Scholar]
  15. Duong F., Eichler J., Price A., Leonard M. R., Wickner W. 1997; Biogenesis of the Gram-negative bacterial envelope. Cell 91:567–573 [CrossRef]
    [Google Scholar]
  16. Economou A., Wickner W. 1994; SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843 [CrossRef]
    [Google Scholar]
  17. Economou A., Pogliano J. A., Beckwith J., Oliver D. B., Wickner W. 1995; SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83:1171–1181 [CrossRef]
    [Google Scholar]
  18. Fekkes P., Driessen A. J. M. 1999; Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173
    [Google Scholar]
  19. Fekkes P., van der Does C., Driessen A. J. M. 1997; The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of the precursor protein translocation. EMBO J 16:6105–6113 [CrossRef]
    [Google Scholar]
  20. Georgopoulos C. P. 1977; A new bacterial gene (groPC) which affects lambda DNA replication. Mol Gen Genet 151:35–39 [CrossRef]
    [Google Scholar]
  21. Gräfe S., Ellinger T., Malke H. 1996; Structural dissection and functional analysis of the complex promoter of the streptokinase gene from Streptococcus equisimilis H46A. Med Microbiol Immunol 185:11–17 [CrossRef]
    [Google Scholar]
  22. Hartl F.-U., Lecker S., Schiebel E., Hendrick J. P., Wickner W. 1990; The binding cascade of SecB to SecA to SecY/E mediates pre-protein targeting to the Escherichia coli plasma membrane. Cell 63:269–279 [CrossRef]
    [Google Scholar]
  23. von Heijne G. 1990; The signal peptide. J Membrane Biol 115:195–201 [CrossRef]
    [Google Scholar]
  24. Hendrick J. P., Hartl F.-U. 1993; Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384 [CrossRef]
    [Google Scholar]
  25. Hesterkamp T., Bukau B. 1998; Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J 17:4818–4828 [CrossRef]
    [Google Scholar]
  26. Honda K., Nakamura K., Nishiguchi M., Yamane K. 1993; Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 17:4885–4894
    [Google Scholar]
  27. Ito K., Bassford P. Jr, Beckwith J. 1981; Protein localization in E. coli: is there a common step in the secretion of periplasmic and outer membrane proteins?. Cell 24:707–714 [CrossRef]
    [Google Scholar]
  28. Jeong S. M., Yoshikawa H., Takahashi H. 1993; Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol Microbiol 10:133–142 [CrossRef]
    [Google Scholar]
  29. Kim Y. J., Oliver D. B. 1994; Escherichia coli SecY and SecE protein appear insufficient to constitute the SecA receptor. FEBS Lett 339:175–180 [CrossRef]
    [Google Scholar]
  30. Kumamoto C. A. 1989; Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc Natl Acad Sci USA 86:5320–5324 [CrossRef]
    [Google Scholar]
  31. Kumamoto C. A., Beckwith J. 1985; Evidence for specificity at an early step in protein export in Escherichia coli. J Bacteriol 163:267–274
    [Google Scholar]
  32. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium. Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  33. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. 1989; Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8:3517–3521
    [Google Scholar]
  34. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  35. Lee C. A., Beckwith J. 1986; Suppression of growth and protein secretion defects in Escherichia coli secA mutants by decreasing protein synthesis. J Bacteriol 166:878–883
    [Google Scholar]
  36. Luirink J., High S., Wood H., Giner A., Tollervey D., Dobberstein B. 1992; Signal sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 359:741–743 [CrossRef]
    [Google Scholar]
  37. Mead D. A., Szczesna-Skorupa E., Kemper B. 1986; Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engng 1:67–74 [CrossRef]
    [Google Scholar]
  38. Meijer W. J., de Jong A., Bea G., Wisman A., Tjalsma H., Venema G., Bron S., van Dijl J. M. 1995; The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17:621–631 [CrossRef]
    [Google Scholar]
  39. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Müller J. 1996; Influence of impaired chaperone or secretion function on SecB production in Escherichia coli. J Bacteriol 178:6097–6104
    [Google Scholar]
  41. Müller J., Walter F., van Dijl J. M., Behnke D. 1992; Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol Gen Genet 235:89–96 [CrossRef]
    [Google Scholar]
  42. Nakamura K., Nakamura A., Takamatsu H., Yoshikawa H., Yamane K. 1990; Cloning and characterization of a Bacillus subtilis gene homologous to Escherichia coli secY. J Biochem 107:603–607
    [Google Scholar]
  43. Närvänen A. 1990 Synthetic peptides as probes for protein interactions and as antigenic epitopes PhD thesis University of Jyväskylä; Finland:
    [Google Scholar]
  44. Oliver D. B. 1985; Identification of five new essential genes involved in the synthesis of a secreted protein in Escherichia coli. J Bacteriol 161:285–291
    [Google Scholar]
  45. Oliver D. B., Beckwith J. 1981; Escherichia coli mutant pleiotropically defective in the export of secreted proteins. Cell 25:765–772 [CrossRef]
    [Google Scholar]
  46. Oliver D. B., Beckwith J. 1982; Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 330:311–319
    [Google Scholar]
  47. Overhoff B., Klein M., Spies M., Freudl R. 1991; Identification of a gene fragment which codes for the amino-terminal 364 amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in Gram-positive and Gram-negative bacteria. Mol Gen Genet 228:417–423
    [Google Scholar]
  48. Overhoff-Freundlieb B., Freudl R. 1991; Suppression of an Escherichia coli secAts mutant by a gene cloned from Staphylococcus carnosus. FEMS Microbiol Lett 84:1143–1150
    [Google Scholar]
  49. Phillips G. J., Silhavy T. J. 1992; The Escherichia coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746 [CrossRef]
    [Google Scholar]
  50. Pohlschröder M., Prinz W. A., Hartmann E., Beckwith J. 1997; Protein translocation in the three domains of life: variations on a theme. Cell 91:563–566 [CrossRef]
    [Google Scholar]
  51. Polissi A., Goffin L., Georgopoulos C. 1995; The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17:159–169
    [Google Scholar]
  52. Pugsley A. P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  53. Sadaie Y., Takamatsu H., Nakamura K., Yamane K. 1991; Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98:101–105 [CrossRef]
    [Google Scholar]
  54. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  55. Schmidt A. M., Schiesswohl M., Völker U., Hecker M., Schumann W. 1992; Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon of Bacillus subtilis. J Bacteriol 174:3993–3999
    [Google Scholar]
  56. Schmidt M. G., Oliver D. B. 1989; SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli. J Bacteriol 171:643–649
    [Google Scholar]
  57. Schröder H., Langer T., Hartl F.-U., Bukau B. 1993; DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144
    [Google Scholar]
  58. Seoh H. K., Tai P. C. 1997; Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membranes. J Bacteriol 179:1077–1081
    [Google Scholar]
  59. Seoh H. K., Tai P. C. 1999; Catabolic repression of secB expression is positively controlled by cyclic AMP (cAMP) receptor protein-cAMP complexes at the transcriptional level. J Bacteriol 181:1892–1899
    [Google Scholar]
  60. Skinner M. K., Griswold M. D. 1983; Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochem J 209:281–284
    [Google Scholar]
  61. Struck J. C. R., Vogel D. W., Ulbrich N., Erdmann V. A. 1988; The Bacillus subtilis scRNA is related to the 4.5S RNA from Escherichia coli. Nucleic Acids Res 16:2719 [CrossRef]
    [Google Scholar]
  62. Suh J.-W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W. 1990; Isolation of a secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Mol Microbiol 4:305–314 [CrossRef]
    [Google Scholar]
  63. Sunshine M., Feiss M., Stuart J., Yochem J. 1977; A new host gene (groPC) necessary for lambda DNA replication. Mol Gen Genet 151:27–34 [CrossRef]
    [Google Scholar]
  64. Tjalsma H., Noback M. A., Bron S., Venema G., Yamane K., van Dijl J. M. 1997; Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992 [CrossRef]
    [Google Scholar]
  65. Tjalsma H., Bolhuis A., van Roosmalen M. L., Wiegert T., Schumann W., Broekhuizen C. P., Quax W. J., Venema G., Bron S., van Dijl J. M. 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331 [CrossRef]
    [Google Scholar]
  66. Topping T. B., Randall L. L. 1997; Chaperone SecB from Escherichia coli mediates kinetic partitioning via a dynamic equilibrium with its ligands. J Biol Chem 272:19314–19318 [CrossRef]
    [Google Scholar]
  67. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  68. Van Dyk T. K., Gatenby A. A., LaRossa R. A. 1989; Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342:451–453 [CrossRef]
    [Google Scholar]
  69. Wetzstein J., Völker U., Dedio J., Löbau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol 174:3300–3310
    [Google Scholar]
  70. Wickner W., Driessen A. J. M., Hartl F.-U. 1991; The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60:101–124 [CrossRef]
    [Google Scholar]
  71. Wild J., Altman E., Yura T., Gross C. A. 1992; DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 6:1165–1172 [CrossRef]
    [Google Scholar]
  72. Wild J., Walter W. A., Gross C. A., Altman E. 1993; Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol 175:3992–3997
    [Google Scholar]
  73. Wild J., Rossmeissl P., Walter W. A., Gross C. A. 1996; Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 178:3608–3616
    [Google Scholar]
  74. Wolin S. L. 1994; From elephant to E. coli: SRP-dependent protein targeting. Cell 77:787–790 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-77
Loading
/content/journal/micro/10.1099/00221287-146-1-77
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error