1887

Abstract

The growth and protein export defects (Ts) strains can be suppressed by the CsaA protein of . The present studies indicate that this effect can be attributed to chaperone-like activities of CsaA. First, CsaA stimulated protein export in , and mutant strains of . Second, CsaA suppressed the growth defects of , and mutants of . Third, and most importantly, CsaA exhibited chaperone-like properties by stimulating the reactivation of heat-denatured firefly luciferase in , , and mutant strains of , and by preventing the aggregation of heat-denatured luciferase . Thus, it seems that CsaA suppresses the growth and secretion defects of (Ts) strains either by improving the translocation competence of exported pre-proteins, thereby making them better substrates for mutant SecA proteins, or by stimulating the translocation activity of mutant SecA proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-77
2000-01-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460077a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-77&mimeType=html&fmt=ahah

References

  1. Altman, E., Kumamoto, C. A. & Emr, S. D. ( 1991; ). Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J 10, 239-245.
    [Google Scholar]
  2. Ang, D., Chandrasekhar, G. N., Zylicz, M. & Georgopoulos, C. ( 1986; ). Escherichia coli grpE gene codes for heat shock protein B25.3, essential for both lambda DNA replication at all temperatures and host growth at high temperature. J Bacteriol 167, 25-29.
    [Google Scholar]
  3. den Blaauwen, T. & Driessen, A. J. M. ( 1996; ). Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165, 1-8.[CrossRef]
    [Google Scholar]
  4. Bolhuis, A., Sorokin, A., Azevedo, V., Ehrlich, S. D., Braun, P. G., de Jong, A., Venema, G., Bron, S. & van Dijl, J. M. ( 1996; ). Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol 22, 605-618.[CrossRef]
    [Google Scholar]
  5. Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., Bron, S., Quax, W. J. & van Dijl, J. M. ( 1998; ). SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273, 21217-21224.[CrossRef]
    [Google Scholar]
  6. Bolivar, F., Rodriguez, R. L., Betlach, M. C. & Boyer, H. W. ( 1977; ). Construction and characterization of new cloning vehicles. I Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2, 75-93.[CrossRef]
    [Google Scholar]
  7. Brickman, E. R., Oliver, D. B., Garwin, J. L., Kumamoto, C. A. & Beckwith, J. ( 1984; ). The use of extragenic suppressors to define genes involved in protein export in Escherichia coli. Mol Gen Genet 196, 24-27.[CrossRef]
    [Google Scholar]
  8. de Cock, H. & Randall, L. L. ( 1998; ). Correlation between requirement for SecA during export and folding properties of precursor polypeptides. Mol Microbiol 27, 469-476.[CrossRef]
    [Google Scholar]
  9. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. ( 1997; ). The chemistry and enzymology of the type I signal peptidases. Protein Science 6, 1129-1138.[CrossRef]
    [Google Scholar]
  10. Danese, P. N., Murphy, C. K. & Silhavy, T. J. ( 1995; ). Multicopy suppression of cold-sensitive sec mutations in Escherichia coli. J Bacteriol 177, 4969-4973.
    [Google Scholar]
  11. De Gier, J. W., Valent, Q. A., von Heijne, G. & Luirink, J. ( 1997; ). The E. coli SRP: preferences of a targeting factor. FEBS Lett 408, 1-4.[CrossRef]
    [Google Scholar]
  12. van der Does, C., Manting, E. H., Kaufmann, A., Lutz, M. & Driessen, A. J. M. ( 1998; ). Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37, 201-210.[CrossRef]
    [Google Scholar]
  13. van Dijl, J. M., de Jong, A., Smith, H., Bron, S. & Venema, G. ( 1991; ). Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol Gen Genet 227, 40-48.[CrossRef]
    [Google Scholar]
  14. van Dijl, J. M., de Jong, A., Vehmaanperä, J., Venema, G. & Bron, S. ( 1992; ). Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11, 2819-2828.
    [Google Scholar]
  15. Duong, F., Eichler, J., Price, A., Leonard, M. R. & Wickner, W. ( 1997; ). Biogenesis of the Gram-negative bacterial envelope. Cell 91, 567-573.[CrossRef]
    [Google Scholar]
  16. Economou, A. & Wickner, W. ( 1994; ). SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843.[CrossRef]
    [Google Scholar]
  17. Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B. & Wickner, W. ( 1995; ). SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-1181.[CrossRef]
    [Google Scholar]
  18. Fekkes, P. & Driessen, A. J. M. ( 1999; ). Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63, 161-173.
    [Google Scholar]
  19. Fekkes, P., van der Does, C. & Driessen, A. J. M. ( 1997; ). The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of the precursor protein translocation. EMBO J 16, 6105-6113.[CrossRef]
    [Google Scholar]
  20. Georgopoulos, C. P. ( 1977; ). A new bacterial gene (groPC) which affects lambda DNA replication. Mol Gen Genet 151, 35-39.[CrossRef]
    [Google Scholar]
  21. Gräfe, S., Ellinger, T. & Malke, H. ( 1996; ). Structural dissection and functional analysis of the complex promoter of the streptokinase gene from Streptococcus equisimilis H46A. Med Microbiol Immunol 185, 11-17.[CrossRef]
    [Google Scholar]
  22. Hartl, F.-U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. ( 1990; ). The binding cascade of SecB to SecA to SecY/E mediates pre-protein targeting to the Escherichia coli plasma membrane. Cell 63, 269-279.[CrossRef]
    [Google Scholar]
  23. von Heijne, G. ( 1990; ). The signal peptide. J Membrane Biol 115, 195-201.[CrossRef]
    [Google Scholar]
  24. Hendrick, J. P. & Hartl, F.-U. ( 1993; ). Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62, 349-384.[CrossRef]
    [Google Scholar]
  25. Hesterkamp, T. & Bukau, B. ( 1998; ). Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J 17, 4818-4828.[CrossRef]
    [Google Scholar]
  26. Honda, K., Nakamura, K., Nishiguchi, M. & Yamane, K. ( 1993; ). Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 17, 4885-4894.
    [Google Scholar]
  27. Ito, K., Bassford, P.Jr & Beckwith, J. ( 1981; ). Protein localization in E. coli: is there a common step in the secretion of periplasmic and outer membrane proteins? Cell 24, 707-714.[CrossRef]
    [Google Scholar]
  28. Jeong, S. M., Yoshikawa, H. & Takahashi, H. ( 1993; ). Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol Microbiol 10, 133-142.[CrossRef]
    [Google Scholar]
  29. Kim, Y. J. & Oliver, D. B. ( 1994; ). Escherichia coli SecY and SecE protein appear insufficient to constitute the SecA receptor. FEBS Lett 339, 175-180.[CrossRef]
    [Google Scholar]
  30. Kumamoto, C. A. ( 1989; ). Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc Natl Acad Sci USA 86, 5320-5324.[CrossRef]
    [Google Scholar]
  31. Kumamoto, C. A. & Beckwith, J. ( 1985; ). Evidence for specificity at an early step in protein export in Escherichia coli. J Bacteriol 163, 267-274.
    [Google Scholar]
  32. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  33. Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y. & Ito, K. ( 1989; ). Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8, 3517-3521.
    [Google Scholar]
  34. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  35. Lee, C. A. & Beckwith, J. ( 1986; ). Suppression of growth and protein secretion defects in Escherichia coli secA mutants by decreasing protein synthesis. J Bacteriol 166, 878-883.
    [Google Scholar]
  36. Luirink, J., High, S., Wood, H., Giner, A., Tollervey, D. & Dobberstein, B. ( 1992; ). Signal sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 359, 741-743.[CrossRef]
    [Google Scholar]
  37. Mead, D. A., Szczesna-Skorupa, E. & Kemper, B. ( 1986; ). Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engng 1, 67-74.[CrossRef]
    [Google Scholar]
  38. Meijer, W. J., de Jong, A., Bea, G., Wisman, A., Tjalsma, H., Venema, G., Bron, S. & van Dijl, J. M. ( 1995; ). The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17, 621-631.[CrossRef]
    [Google Scholar]
  39. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Müller, J. ( 1996; ). Influence of impaired chaperone or secretion function on SecB production in Escherichia coli. J Bacteriol 178, 6097-6104.
    [Google Scholar]
  41. Müller, J., Walter, F., van Dijl, J. M. & Behnke, D. ( 1992; ). Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol Gen Genet 235, 89-96.[CrossRef]
    [Google Scholar]
  42. Nakamura, K., Nakamura, A., Takamatsu, H., Yoshikawa, H. & Yamane, K. ( 1990; ). Cloning and characterization of a Bacillus subtilis gene homologous to Escherichia coli secY. J Biochem 107, 603-607.
    [Google Scholar]
  43. Närvänen, A. (1990). Synthetic peptides as probes for protein interactions and as antigenic epitopes. PhD thesis, University of Jyväskylä, Finland.
  44. Oliver, D. B. ( 1985; ). Identification of five new essential genes involved in the synthesis of a secreted protein in Escherichia coli. J Bacteriol 161, 285-291.
    [Google Scholar]
  45. Oliver, D. B. & Beckwith, J. ( 1981; ). Escherichia coli mutant pleiotropically defective in the export of secreted proteins. Cell 25, 765-772.[CrossRef]
    [Google Scholar]
  46. Oliver, D. B. & Beckwith, J. ( 1982; ). Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 330, 311-319.
    [Google Scholar]
  47. Overhoff, B., Klein, M., Spies, M. & Freudl, R. ( 1991; ). Identification of a gene fragment which codes for the amino-terminal 364 amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in Gram-positive and Gram-negative bacteria. Mol Gen Genet 228, 417-423.
    [Google Scholar]
  48. Overhoff-Freundlieb, B. & Freudl, R. ( 1991; ). Suppression of an Escherichia coli secAts mutant by a gene cloned from Staphylococcus carnosus. FEMS Microbiol Lett 84, 1143-1150.
    [Google Scholar]
  49. Phillips, G. J. & Silhavy, T. J. ( 1992; ). The Escherichia coli ffh gene is necessary for viability and efficient protein export. Nature 359, 744-746.[CrossRef]
    [Google Scholar]
  50. Pohlschröder, M., Prinz, W. A., Hartmann, E. & Beckwith, J. ( 1997; ). Protein translocation in the three domains of life: variations on a theme. Cell 91, 563-566.[CrossRef]
    [Google Scholar]
  51. Polissi, A., Goffin, L. & Georgopoulos, C. ( 1995; ). The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17, 159-169.
    [Google Scholar]
  52. Pugsley, A. P. ( 1993; ). The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57, 50-108.
    [Google Scholar]
  53. Sadaie, Y., Takamatsu, H., Nakamura, K. & Yamane, K. ( 1991; ). Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98, 101-105.[CrossRef]
    [Google Scholar]
  54. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  55. Schmidt, A. M., Schiesswohl, M., Völker, U., Hecker, M. & Schumann, W. ( 1992; ). Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon of Bacillus subtilis. J Bacteriol 174, 3993-3999.
    [Google Scholar]
  56. Schmidt, M. G. & Oliver, D. B. ( 1989; ). SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli. J Bacteriol 171, 643-649.
    [Google Scholar]
  57. Schröder, H., Langer, T., Hartl, F.-U. & Bukau, B. ( 1993; ). DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12, 4137-4144.
    [Google Scholar]
  58. Seoh, H. K. & Tai, P. C. ( 1997; ). Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membranes. J Bacteriol 179, 1077-1081.
    [Google Scholar]
  59. Seoh, H. K. & Tai, P. C. ( 1999; ). Catabolic repression of secB expression is positively controlled by cyclic AMP (cAMP) receptor protein-cAMP complexes at the transcriptional level. J Bacteriol 181, 1892-1899.
    [Google Scholar]
  60. Skinner, M. K. & Griswold, M. D. ( 1983; ). Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochem J 209, 281-284.
    [Google Scholar]
  61. Struck, J. C. R., Vogel, D. W., Ulbrich, N. & Erdmann, V. A. ( 1988; ). The Bacillus subtilis scRNA is related to the 4.5S RNA from Escherichia coli. Nucleic Acids Res 16, 2719.[CrossRef]
    [Google Scholar]
  62. Suh, J.-W., Boylan, S. A., Thomas, S. M., Dolan, K. M., Oliver, D. B. & Price, C. W. ( 1990; ). Isolation of a secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Mol Microbiol 4, 305-314.[CrossRef]
    [Google Scholar]
  63. Sunshine, M., Feiss, M., Stuart, J. & Yochem, J. ( 1977; ). A new host gene (groPC) necessary for lambda DNA replication. Mol Gen Genet 151, 27-34.[CrossRef]
    [Google Scholar]
  64. Tjalsma, H., Noback, M. A., Bron, S., Venema, G., Yamane, K. & van Dijl, J. M. ( 1997; ). Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272, 25983-25992.[CrossRef]
    [Google Scholar]
  65. Tjalsma, H., Bolhuis, A., van Roosmalen, M. L., Wiegert, T., Schumann, W., Broekhuizen, C. P., Quax, W. J., Venema, G., Bron, S. & van Dijl, J. M. ( 1998; ). Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases Genes Dev 12, 2318-2331.[CrossRef]
    [Google Scholar]
  66. Topping, T. B. & Randall, L. L. ( 1997; ). Chaperone SecB from Escherichia coli mediates kinetic partitioning via a dynamic equilibrium with its ligands. J Biol Chem 272, 19314-19318.[CrossRef]
    [Google Scholar]
  67. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  68. Van Dyk, T. K., Gatenby, A. A. & LaRossa, R. A. ( 1989; ). Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342, 451-453.[CrossRef]
    [Google Scholar]
  69. Wetzstein, J., Völker, U., Dedio, J., Löbau, S., Zuber, U., Schiesswohl, M., Herget, C., Hecker, M. & Schumann, W. ( 1992; ). Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol 174, 3300-3310.
    [Google Scholar]
  70. Wickner, W., Driessen, A. J. M. & Hartl, F.-U. ( 1991; ). The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60, 101-124.[CrossRef]
    [Google Scholar]
  71. Wild, J., Altman, E., Yura, T. & Gross, C. A. ( 1992; ). DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 6, 1165-1172.[CrossRef]
    [Google Scholar]
  72. Wild, J., Walter, W. A., Gross, C. A. & Altman, E. ( 1993; ). Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol 175, 3992-3997.
    [Google Scholar]
  73. Wild, J., Rossmeissl, P., Walter, W. A. & Gross, C. A. ( 1996; ). Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 178, 3608-3616.
    [Google Scholar]
  74. Wolin, S. L. ( 1994; ). From elephant to E. coli: SRP-dependent protein targeting. Cell 77, 787-790.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-77
Loading
/content/journal/micro/10.1099/00221287-146-1-77
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error