Proteome analysis of extracellular proteins: a two-dimensional protein electrophoretic study

The SWISS-PROT accession numbers for the N-terminal amino acid sequences reported in this paper are: P00691 for AmyE; P54507 for CotN; O07921 for Csn; P09124 for Gap; P26901 for KatA; P39116 for Pel; P39824 for PenP; P54375 for SodA; P29141 for Vpr; Q07833 for WapA; P54423 for WprA; P54327 for XkdG; Q45071 for XynD; P94421 for YclQ; O31803 for YcnM; O05512 for YdhT; O34952 for YflE; O06487 for YfnI; O31737 for YlqB; P96740 for YwtD; P42110 for YxaK; P94356 for YxkC.

Free

Abstract

To analyse the proteome of extracellular proteins, extracellular protein samples were prepared from culture media (minimal medium containing 04% glucose) of parental 168, a -temperature sensitive mutant and an conditional mutant, and examined by two-dimensional gel electrophoresis. Approximately 100 to 110 spots were visualized in a gel of 168 extracellular proteins. Over 90% and 80% of these disappeared in the absence of SecA and Ffh, respectively. Thirty-eight obvious spots on the gel of the 168 preparation were selected and compared with spots obtained under SecA- or Ffh-deficient conditions. The appearance of 36 of these 38 spots depended on SecA and Ffh. Nineteen additional extracellular proteins were detected in cultures maintained in cellobiose, maltose and soluble starch. Among 23 proteins of which the N-terminal amino acid sequences were determined, 17 were extracellular proteins having signal peptides in their precursor form. Two membrane proteins, YfnI and YflE, were cleaved behind Ala-Tyr-Ala and Ala-Leu-Ala, respectively, and of which products seemed to be liberated into the culture medium. The production of YfnI and YflE were also dependent on SecA and Ffh. These results indicate that most extracellular proteins target to and translocate across the cytoplasmic membrane by co-operation between the signal-recognition particle and Sec protein-secretion pathways. In contrast, a spot for Hag appeared independent from SecA and Ffh. Intracellular proteins Gap, SodA and KatA were identified in the extracellular protein samples. On the basis of these results and computer searches, it was predicted that produces 150 to 180 proteins extracellularly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-65
2000-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460065a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-65&mimeType=html&fmt=ahah

References

  1. Antelmann H., Bernhardt J., Schmid R., March H., Volker U., Hecker M. 1997; First steps from two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451–1463 [CrossRef]
    [Google Scholar]
  2. Beltzer J. P., Wessels H. P., Spiess M. 1989; Signal peptidase can cleave inside a polytopic membrane protein. FEBS Lett 253:93–98 [CrossRef]
    [Google Scholar]
  3. Berks B. C. 1996; A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol 22:393–404 [CrossRef]
    [Google Scholar]
  4. Bol D. K., Yasbin R. E. 1991; The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene 109:31–37 [CrossRef]
    [Google Scholar]
  5. Bolhuis A., Broekhuizen C. P., Sorokin A., van Roosmalen M. L., Venema G., Bron S., Quax W., van Dijl J. M. 1998; SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J Biol Chem 273:21217–21224 [CrossRef]
    [Google Scholar]
  6. Bunai K., Takamatsu H., Horinaka T., Oguro A., Nakamura K., Yamane K. 1996; Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun 227:762–767 [CrossRef]
    [Google Scholar]
  7. Bunai K., Yamada K., Hayashi K., Nakamura K., Yamane K. 1999; Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem 125:151–159 [CrossRef]
    [Google Scholar]
  8. Collier D. N., Bankaitis V. A., Weiss J. B., Bassford P. J. Jr. 1988; The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell 53:273–283 [CrossRef]
    [Google Scholar]
  9. DeLange R. J., Chang J. Y., Shaper J. H., Glazer A. N. 1976; Amino acid sequence of flagellin of Bacillus subtilis 168. III. Tryptic peptides, N-bromosuccinimide peptides, and the complete amino acid sequence. J Biol Chem 251:705–711
    [Google Scholar]
  10. Douville K., Price A., Eichler J., Economou A., Wickner W. 1995; SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem 270:20106–20111 [CrossRef]
    [Google Scholar]
  11. Foster S. J. 1993; Molecular analysis of the three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 8:299–310 [CrossRef]
    [Google Scholar]
  12. Gosalbes M. J., Perez-Gonzalez J. A., Gonzalez R., Navarro A. 1991; Two β-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression and sequence analysis of genes encoding a xylanase and an endo β-(1,3)-(1,4)-glucanase. J Bacteriol 173:7705–7710
    [Google Scholar]
  13. Graumann P., Schroder K., Schmid R., Marohiel M. A. 1996; Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619
    [Google Scholar]
  14. Hartle F.-U., Lecker S., Schiebel E., Hendrick T. P., Wickner W. 1990; The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63:269–279 [CrossRef]
    [Google Scholar]
  15. Henner D. I. 1990; Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol 185:223–228
    [Google Scholar]
  16. Honda K., Nakamura K., Nishiguchi M., Yamane K. 1993; Cloning and characterization of a Bacillus subtilis gene encoding a homologue of the 54 kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 175:4885–4894
    [Google Scholar]
  17. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  18. Izui K., Nielsen J. B. K., Caulfield M. P., Lampen J. O. 1980; Large exopenicillinase, initial extracellular form detected in cultures of Bacillus licheniformis. Biochemistry 19:1882–1886 [CrossRef]
    [Google Scholar]
  19. Keenan R. J., Freymann D. M., Walter P., Stroud R. M. 1998; Crystal structure of the signal-sequence-binding subunit of the signal recognition particle. Cell 94:181–191 [CrossRef]
    [Google Scholar]
  20. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  21. Lutcke H. 1995; Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem 228:531–550 [CrossRef]
    [Google Scholar]
  22. Lutcke H., High S., Romisch K., Ashford A. J., Dobberstein B. 1992; The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J 11:1543–1551
    [Google Scholar]
  23. Margot P., Karamata D. 1996; The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142:3437–3444 [CrossRef]
    [Google Scholar]
  24. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J Biol Chem 262:10035–10038
    [Google Scholar]
  25. Miyakawa Y., Komano T. 1980; Study of the cell cycle of Bacillus subtilis using temperature sensitive mutants. I. Isolation and genetic analysis of the mutants defective in septum formation. Mol Gen Genet 181:207–214
    [Google Scholar]
  26. Morrissey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310 [CrossRef]
    [Google Scholar]
  27. Nakamura K., Yahagi S., Yamazaki T., Yamane K. 1999; Bacillus subtilis histone-like protein, HBsu, is an integral component of an SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 274:13569–13576 [CrossRef]
    [Google Scholar]
  28. Namba K., Yamashita I., Vonderviszt F. 1989; Structure of the core and central channel of bacterial flagella. Nature 342:648–654 [CrossRef]
    [Google Scholar]
  29. Nasser W., Awade A. C., Reverchon S., Robert-Baudony J. 1993; Pectate lyase from Bacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Lett 335:319–326 [CrossRef]
    [Google Scholar]
  30. Nishiyama K., Suzuki T., Tokuda H. 1996; Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81 [CrossRef]
    [Google Scholar]
  31. Nohara T., Nakai M., Goto A., Endo T. 1995; Isolation and chracterization of the cDNA for pea chloroplast SecA: evolutionary conservation of the bacterial-type SecA-dependent protein transport within chloroplasts. FEBS Lett 364:305–308 [CrossRef]
    [Google Scholar]
  32. Rabilloud T., Adessi C., Giraudel A., Lunardi J. 1997; Improvement of the solubilization of proteins in two-dimensional electroporesis with immobilized pH gradient. Electrophoresis 18:307–311 [CrossRef]
    [Google Scholar]
  33. Rapoport T. A., Jungnickel B., Kutay U. 1996; Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membrane. Annu Rev Biochem 65:271–303 [CrossRef]
    [Google Scholar]
  34. Sadaie Y., Takamatsu H., Nakamura K., Yamane K. 1991; Sequencing reveals similarity of the wild type div+ gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98:101–105 [CrossRef]
    [Google Scholar]
  35. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. 1998; Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650 [CrossRef]
    [Google Scholar]
  36. Sloma A., Rufo G. A., Theriault K. A., Dwyer M., Wilson S. W., Pero J. 1991; Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 173:6889–6895
    [Google Scholar]
  37. Stephenson K., Harwood C. R. 1998; Influence of a cell-wall-associated protease on production of α-amylase by Bacillus subtilis. Appl Environ Microbiol 64:2875–2881
    [Google Scholar]
  38. Stöver A. G., Driks A. 1999; Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J Bacteriol 181:1664–1672
    [Google Scholar]
  39. Takamatsu H., Fuma S., Nakamura K., Sadaie Y., Shinkai A., Matsuyama S., Mizushima S., Yamane K. 1992; In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. J Bacteriol 174:4308–4316
    [Google Scholar]
  40. Takamatsu H., Nakane A., Sadaie Y., Nakamura K., Yamane K. 1994; The rapid degradation of mutant SecA protein in Bacillus subtilis secA341(ts) mutant causes a protein-translocation defect in the cell. Biosci Biotechnol Biochem 58:1845–1850 [CrossRef]
    [Google Scholar]
  41. Takamatsu H., Bunai K., Horinaka T., Oguro A., Nakamura K., Yamane K. 1997; Identification of a region required for binding to presecretory protein in Bacillus subtilis Ffh, a homoloque of 54 kDa subunit of mammalian signal recognition particle. Eur J Biochem 248:575–582 [CrossRef]
    [Google Scholar]
  42. Tjalsma H., Bolhuis A., van Roosmalen M. L.7 other authors 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331 [CrossRef]
    [Google Scholar]
  43. Tjalsma H., Kontinen V. P., Pragai Z., Wu H., Meima R., Venema G., Bron S., Sarvas M., van Dijl J. M. 1999; The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis: signal peptidease II is required for the efficient secretion of α-amylase, a non-lipoprotein. J Biol Chem 274:1698–1707 [CrossRef]
    [Google Scholar]
  44. Tominaga Y., Tsujisaka Y. 1975; Purification and some enzymatic properties of the chitosanase from Bacillus R-4 which lyses Phizoprus cell walls. Biochim Biophys Acta 410:145–155 [CrossRef]
    [Google Scholar]
  45. Ulbrandt N. D., Newitt J. A., Bernstein H. D. 1997; The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196 [CrossRef]
    [Google Scholar]
  46. Valent Q. A., Scotti P. A., High S., de Gier J.-W. L., von Heijne G., Lentzen G., Wintermayer W., Oudega B., Luirink J. 1998; The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 17:2504–2512 [CrossRef]
    [Google Scholar]
  47. Walter P., Blobel G. 1982; Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698 [CrossRef]
    [Google Scholar]
  48. Walter P., Johnson A. E. 1994; Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119 [CrossRef]
    [Google Scholar]
  49. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. 1998; A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101 [CrossRef]
    [Google Scholar]
  50. van Wely K. H. M., Swaving J., Broekhuizen C. P., Rose M., Quax W. J., Driessen A. J. M. 1999; Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol 181:1786–1792
    [Google Scholar]
  51. Yamazaki H., Ohmura K., Nakayama A., Takeichi Y., Otozai K., Yamasaki M., Tamura G., Yamane K. 1983; α-Amylase genes (amyR2 and amyE+) from an α-amylase hyperproducing Bacillus subtilis strain: molecular cloning and nucleotide sequences. J Bacteriol 156:327–337
    [Google Scholar]
  52. Yang M., Galizzi A., Henner D. J. 1983; Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res 11:237–249 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-65
Loading
/content/journal/micro/10.1099/00221287-146-1-65
Loading

Data & Media loading...

Most cited Most Cited RSS feed