1887

Abstract

The molecular mobility of P and C in dormant spore samples with different water concentrations was investigated by high-resolution solid-state NMR. Lowest molecular mobility was observed in freeze-dried preparations. Rehydration to a 10% weight increase resulted in increases in molecular motions and addition of excess water furthered this effect. A spore slurry which had been freeze-dried displayed after addition of excess water similar NMR spectra to native wet preparations. Dipicolinic acid (DPA), which is mainly located in the core, was detected at all hydration levels in C cross-polarization magic angle spinning (CPMAS) but not in single-pulse magic angle spinning (SPMAS) spectra, indicating that hydration had no effect on its mobility. The molecular mobility of P, present mainly in core-specific components, was strongly dependent on hydration. This result suggests reversible water migration between inner spore compartments and the environment, whereas C spectra of DPA indicate that it is immobilized in a water-insoluble network in the core. Scanning transmission electron microscopy revealed that freeze-dried spores were significantly longer and narrower than fully hydrated spores and had a 3% smaller volume.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-49
2000-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460049a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-49&mimeType=html&fmt=ahah

References

  1. Ablett S., Darke A. H., Lillford P. J., Martin D. R. 1999; Glass formation and dormancy in bacterial spores. Int J Food Sci Technol 34:59–69 [CrossRef]
    [Google Scholar]
  2. Beaman T. C., Gerhardt P. 1986; Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl Environ Microbiol 52:1242–1246
    [Google Scholar]
  3. Beaman T. C., Koshikawa T., Pankratz H. S., Gerhardt P. 1984; Dehydration partitioned within core protoplast accounts for heat resistance of bacterial spores. FEMS Microbiol Lett 24:47–51 [CrossRef]
    [Google Scholar]
  4. Bendall M. R., Gordon R. E. 1983; Depth and refocusing pulses designed for multipulse NMR with surface coils. J Magnet Reson 53:365–385
    [Google Scholar]
  5. Black S. H., Gerhardt P. 1962; Permeability of bacterial spores. IV. Water content, uptake, and distribution. J Bacteriol 83:960–967
    [Google Scholar]
  6. Bradbury J. H., Foster J. R., Hammer B., Lindsay J., Murrell W. G. 1981; The source of the heat resistance of bacterial spores. Study of water in spores by NMR. Biochim Biophys Acta 678:157–164 [CrossRef]
    [Google Scholar]
  7. Cooke D., Gidley M. J., Hedges N. D. 1996; Thermal properties of polysaccharides at low moisture. II. Molecular order and control of dissolution temperature in agar. J Therm Anal 47:1485–1498 [CrossRef]
    [Google Scholar]
  8. Crutchfield M. M., Callis C. F., Irani R. R., Roth G. C. 1962; Phosphorus nuclear magnetic resonance studies of ortho and condensed phosphates. Inorg Chem 1:813–817 [CrossRef]
    [Google Scholar]
  9. Dixon K. R. 1987; Phosphorus to bismuth. In Multinuclear NMR pp. 369–402Edited by Mason J. New York: Plenum;
    [Google Scholar]
  10. Dixon W. T., Schaeffer J., Sefcik M. D., Stejskal E. O., McKay R. A. 1982; Total suppression of sidebands in CPMAS C-13 NMR. J Magnet Reson 49:341–345
    [Google Scholar]
  11. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  12. Forrest T. M., Wilson G. E., Pan Y., Schaefer J. 1991; Characterization of cross-linking of cell walls of Bacillus subtilis by a combination of magic-angle spinning NMR and gas chromatography-mass spectrometry of both intact and hydrolyzed 13C- and 15N-labeled cell-wall peptidoglycan. J Biol Chem 266:24485–24491
    [Google Scholar]
  13. Gaillard S., Leguerinel I., Mafart P. 1998; Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. J Food Sci 63:887–889 [CrossRef]
    [Google Scholar]
  14. Gould G. W. 1977; Recent advances in the understanding of resistance and dormancy in bacterial spores. J Appl Bacteriol 42:297–309 [CrossRef]
    [Google Scholar]
  15. Gould G. W., Dring D. J. 1974; Mechanisms of spore heat resistance. Adv Microb Physiol 2:137–164
    [Google Scholar]
  16. Gould G. W., Dring G. J. 1975; Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature 258:402–405 [CrossRef]
    [Google Scholar]
  17. Henderson T. O., Glonek T., Myers T. C. 1974; Phosphorus-31 nuclear magnetic resonance spectroscopy of phospholipids. Biochemistry 13:623–628 [CrossRef]
    [Google Scholar]
  18. Hill P. J., Hall L., Vinicombe D. A., Soper C. J., Setlow P., Waites W. M., Denyer S., Stewart G. S. A. B. 1994; Bioluminescence and spores as biological indicators of inimical processes. J Appl Bact 76:(suppl.),S129–S134 [CrossRef]
    [Google Scholar]
  19. Johnstone K., Ellar D. J., Appleton T. C. 1980; Location of metal ions in Bacillus megaterium spores by high-resolution electron probe x-ray microanalysis. FEMS Microbiol Lett 7:97–101 [CrossRef]
    [Google Scholar]
  20. Jones R. A. Y., Katritzky A. R. 1960; A correlation between the degree of ionization of phosphates and the frequency of phosphorus magnetic resonance. J Inorg Nucleic Chem 15:193–194 [CrossRef]
    [Google Scholar]
  21. Kalichevsky M. T., Jaroszkiewicz E. M., Ablett S., Blanshard J. M. V., Lillford P. J. 1992; The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18:77–88 [CrossRef]
    [Google Scholar]
  22. Kozuka S., Yasuda Y., Tochikubo K. 1985; Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles. J Bacteriol 162:1250–1254
    [Google Scholar]
  23. Lenz G., Gilvarg C. 1973; Dipicolinic acid location in intact spores of Bacillus megaterium. J Bacteriol 114:455–456
    [Google Scholar]
  24. Leuschner R. G. K., Weaver A. C., Lillford P. J. 1999; Rapid particle size distribution analysis of Bacillus suspensions. Colloids Surf B 13:47–57 [CrossRef]
    [Google Scholar]
  25. Lindsay J. A., Murrell W. G. 1986; Solution spectroscopy of dipicolinic acid interaction with nucleic acids: role in spore heat resistance. Curr Microbiol 13:255–259 [CrossRef]
    [Google Scholar]
  26. Lindsay J. A., Beaman T. C., Gerhardt P. 1985; Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol 163:735–737
    [Google Scholar]
  27. Loshon C. A., Setlow P. 1993; Levels of small molecules in dormant spores of Sporosarcina species and comparison with levels in spores of Bacillus and Clostridium species. Can J Microbiol 39:259–262 [CrossRef]
    [Google Scholar]
  28. Lundin R. E., Sacks L. E. 1988; High-resolution solid-state 13C nuclear magnetic resonance of bacterial spores: identification of the alpha-carbon signal of dipicolinic acid. Appl Environ Microbiol 54:923–928
    [Google Scholar]
  29. Maeda Y., Fujita T., Sugiura Y., Koga S. 1968; Physical properties of water in spores of Bacillus megaterium. J Gen Appl Microbiol 14:217–226 [CrossRef]
    [Google Scholar]
  30. Massey Swerdlow B., Setlow B., Setlow P. 1981; Levels of H+ and other monovalent cations in dormant and germinating spores of Bacillus megaterium. J Bacteriol 148:20–29
    [Google Scholar]
  31. Matano Y., Yasuda Y., Tochikubo K. 1993; Evidence that dipicolinic acid is covalently bound to specific macromolecules in spores of Bacillus subtilis. FEMS Microbiol Lett 109:189–194 [CrossRef]
    [Google Scholar]
  32. Moir A., Smith D. A. 1990; The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553 [CrossRef]
    [Google Scholar]
  33. Murrell W. G. 1969; Chemical composition of spores and spore structure. In The Bacterial Spore pp. 215–273Edited by Gould G. W., Hurst A. London: Academic Press;
    [Google Scholar]
  34. Nakashio S., Gerhardt P. 1985; Protoplast dehydration correlated with heat resistance of bacterial spores. J Bacteriol 162:571–578
    [Google Scholar]
  35. Nicolay K. 1992; Application of 31P NMR in the study of microbial metabolism. Trends Food Sci Technol 3:225–230 [CrossRef]
    [Google Scholar]
  36. Nishihara T., Ichikawa T., Kondo M. 1980; Location of elements in ashed spores of Bacillus megaterium. Microbiol Immunol 24:495–506 [CrossRef]
    [Google Scholar]
  37. Rao D. B. N., Cohn M., Scopes R. K. 1978; 31P NMR study of bound reactants and products of yeast 3-phosphoglycerate kinase at equilibrium and the effect of sulfate ion. J Biol Chem 253:8056–8060
    [Google Scholar]
  38. Rasmussen L. K., Sørensen E. S., Petersen T. E., Nielsen N. C., Thomsen J. K. 1997; Characterization of phosphate sites in native ovine, caprine, and bovine casein micelles and their caseinomacropeptides: a solid-state phosphorus-31 nuclear magnetic resonance and sequence and mass spectrometric study. J Dairy Sci 80:607–614 [CrossRef]
    [Google Scholar]
  39. Santo L. Y., Doi R. H. 1974; Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. J Bacteriol 120:475–481
    [Google Scholar]
  40. Setlow P. 1994; Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:49S–60S [CrossRef]
    [Google Scholar]
  41. Shibata H., Asakura M., Tani I. 1984; An approach to estimation of internal pH of bacterial spores by 31P nuclear magnetic resonance. Jpn J Bacteriol 39:749–755 [CrossRef]
    [Google Scholar]
  42. Shibata H., Yamashita S., Ohe M., Tani I. 1986; Laser raman spectroscopy of lyophilized bacterial spores. Microbiol Immunol 30:307–313 [CrossRef]
    [Google Scholar]
  43. Stewart M., Somlyo A. P., Somlyo A. V., Shuman H., Lindsay J. A., Murrell W. G. 1980; Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe x-ray microanalysis. J Bacteriol 143:481–491
    [Google Scholar]
  44. Watt I. C. 1981; Water vapor adsorption by Bacillus stearothermophilus endospores. In Sporulation and Germination pp. 253–255Edited by Levinson H. S., Sonenshein A. L., Tipper D. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-49
Loading
/content/journal/micro/10.1099/00221287-146-1-49
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error