1887

Abstract

The roles of cyclic formaldehyde oxidation via 6-phosphogluconate dehydrogenase and linear oxidation via the tetrahydromethanopterin (HMPT)-linked pathway were assessed in an obligate methylotroph, KT, by cloning, sequencing and mutating two chromosomal regions containing genes encoding enzymes specifically involved in these pathways:6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase and methenyl HMPT cyclohydrolase (, and ). No null mutants were obtained in or , implying that the cyclic oxidation of formaldehyde is required for C metabolism in this obligate methylotroph, probably as the main energy-generating pathway. In contrast, null mutants were generated in , indicating that the HMPT-linked pathway is dispensable. These mutants showed enhanced sensitivity to formaldehyde, suggesting that this pathway plays a secondary physiological role in this methylotroph. This function is in contrast to AM1, in which the HMPT-linked pathway is essential.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-233
2000-01-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460233a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-233&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  2. Barber R. D., Donohue T. J. 1998; Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:330–337 [CrossRef]
    [Google Scholar]
  3. Chistoserdov A. Y., Chistoserdova L. V., McIntire W. S., Lidstrom M. E. 1994; Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065
    [Google Scholar]
  4. Chistoserdova L. V., Chistoserdov A. Y., Schklyar N. L., Baev M. V., Tsygankov Y. D. 1991; Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum. Antonie Leeuwenhoek 60:101–107 [CrossRef]
    [Google Scholar]
  5. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E. 1998; C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99–102 [CrossRef]
    [Google Scholar]
  6. Ditta G., Schmidhauser T., Yakobson F., Lu P., Liang X., Finlay D., Guiney D., Helinski D. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and monitoring gene expression. Plasmid 13:149–153 [CrossRef]
    [Google Scholar]
  7. Gak E. R., Tsygankov Y. D., Chistoserdov A. Y. 1997; Organization of methylamine utilization genes (mau) in ‘Methylobacillus flagellatum’ KT and analysis of mau mutants. Microbiology 143:1827–1835 [CrossRef]
    [Google Scholar]
  8. Harder W., Attwood M., Quayle J. R. 1973; Methanol assimilation by Hyphomicrobium spp. J Gen Microbiol 78:155–163 [CrossRef]
    [Google Scholar]
  9. Harms N., Ras J., Koning S., Reijnders W. N. M., Stouthamer A. H., van Spanning R. J. M. 1996; Genetics of C1 metabolism regulation in Paracoccus denitrificans. In Microbial Growth on C1 Compounds pp. 126–132Edited by Lidstrom M. E., Tabita F. R. Dordrecht: Kluwer;
    [Google Scholar]
  10. Kiriuchin M. Y., Kletsova L. V., Chistoserdov A. Y., Tsygankov Y. D. 1988; Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT. FEMS Microbiol Lett 52:199–204 [CrossRef]
    [Google Scholar]
  11. Kletsova L. V., Govorukhina N. I., Tsygankov Y. D., Trosenko Y. A. 1987; Metabolism of the obligate methylotroph Methylobacillus flagellatum. Mikrobiologiya 56:901–906
    [Google Scholar]
  12. Kletsova L. V., Chibisova E. S., Tsygankov Y. D. 1988; Mutants of the obligate methylotroph Methylobacillus flagellatum KT defective in genes of the ribulose monophosphate cycle of formaldehyde fixation. Arch Microbiol 149:441–446 [CrossRef]
    [Google Scholar]
  13. Kletsova L. V., Kiriukhin M. Y., Chistoserdov A. Y., Tsygankov Y. D. 1990; Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from Methylobacillus flagellatum. Methods Enzymol 188:335–339
    [Google Scholar]
  14. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138:267–284 [CrossRef]
    [Google Scholar]
  16. Pomper B. K., Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1999; A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur JBiochem 261:475–480 [CrossRef]
    [Google Scholar]
  17. Saito H., Miura K.-I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  18. Simon R., Priefer U., Puhler A. 1983; Vector plasmids for in vivo manipulations of Gram-negative bacteria. In Molecular Genetics of the Bacteria–Plant Interaction pp. 98–106Edited by Puhler A. Berlin: Springer;
    [Google Scholar]
  19. Tsygankov Y. D., Kazakova S. M., Serebrijski I. G. 1990; Genetic mapping of the obligate methylotroph Methylobacillus flagellatum KT: characteristics of prime plasmids and mapping of the chromosome in time-of-entry units. J Bacteriol 172:2747–2754
    [Google Scholar]
  20. Van Gijsegem F., Toussaint A. 1982; Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid 7:30–44 [CrossRef]
    [Google Scholar]
  21. Vinopal R. T., Hillman J. D., Schulman H., Reznikoff W. S., Fraenkel D. G. 1975; New phosphogluconate isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174
    [Google Scholar]
  22. Vorholt J. A., Chistoserdova L., Stolyar S. M., Lidstrom M. E., Thauer R. K. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
  23. Whitaker J. R., Granum P. E. 1980; An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem 109:156–159 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-233
Loading
/content/journal/micro/10.1099/00221287-146-1-233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error