1887

Abstract

The anthracycline skeleton is biosynthesized by aromatic (type II) polyketide synthases. Furthermore, three post-polyketide steps are needed to form the basic aglycone of anthracyclines. Auramycinone was produced in by introducing nine structural genes from three different anthracycline-producing species. The genes used to construct the auramycinone biosynthesis cluster were derived from nogalamycin-, daunomycin- and aclacinomycin-producing strains. The biosynthetic stages were divided into polyketide and post-polyketide steps on the assumption that the first stable intermediate would be nogalonic acid, named analogously to aklanonic acid, the precursor of several anthracyclines. Single genes were cloned in the expression construct in the order determined by the proposed biosynthetic pathway. This facilitated investigation of the products formed in the heterologous host after addition of each separate gene to the construct. The results thus elucidate the biosynthesis steps, products and the genes responsible for the reactions needed to build up an anthracyclinone.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-155
2000-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460155a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-155&mimeType=html&fmt=ahah

References

  1. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. 1969; Adriamycin, 14-hydroxydaunomycin, a new antitumour antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11:1101–1110 [CrossRef]
    [Google Scholar]
  2. Bhuyan B. K., Dietz A. 1965; Fermentation, taxonomic, and biological studies of nogalamycin. J Antimicrob Chemother 5:836–844
    [Google Scholar]
  3. Bibb M. J., Janssen G. R., Ward J. M. 1985; Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226 [CrossRef]
    [Google Scholar]
  4. Brosius J. 1989; Laboratory methods: superpolylinkers in cloning and expression vectors. DNA 8:759–777 [CrossRef]
    [Google Scholar]
  5. Dickens M. L., Ye J., Strohl W. R. 1995; Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J Bacteriol 177:536–543
    [Google Scholar]
  6. Dickens M. L., Ye J., Strohl W. R. 1996; Cloning, sequencing and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J Bacteriol 178:3384–3388
    [Google Scholar]
  7. Dietz A. 1967; Streptomyces steffisburgensis sp.n. J Bacteriol 94:2022–2026
    [Google Scholar]
  8. Fernandez-Moreno M. A., Martinez E., Caballero J. L., Ichinose K., Hopwood D. A., Malpartida F. 1994; DNA sequence and functions of the actVI region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). J Biol Chem 269:24854–24863
    [Google Scholar]
  9. Fu H., Alvarez M. A., Khosla C., Bailey J. E. 1996; Engineered biosynthesis of novel polyketides: regiospecific methylation of an unnatural substrate by the tcmO O-methyltransferase. Biochemistry 35:6527–6532 [CrossRef]
    [Google Scholar]
  10. Fujii I., Ebizuka Y. 1997; Anthracycline biosynthesis in Streptomyces galilaeus. Chem Rev 97:2511–2523 [CrossRef]
    [Google Scholar]
  11. Fujiwara A., Hoshino T., Tazoe M., Fujiwara M. 1982; New anthracycline antibiotics, auramycins and sulfurmycins. I. Isolation and characterization of auramycins A and B, and sulfurmycins A and B. J Antibiot 35:164–175 [CrossRef]
    [Google Scholar]
  12. Gerlitz M., Meurer G., Wendt-Pienkowski E., Madduri K., Hutchinson C. R. 1997; The effect of the daunorubicin dpsH gene on the choice of starter unit and cyclization pattern reveals that Type II polyketide synthases can be unfaithful yet intriguing. J Am Chem Soc 119:7392–7393 [CrossRef]
    [Google Scholar]
  13. Hopwood D. A. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497 [CrossRef]
    [Google Scholar]
  14. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: The John Innes Foundation;
    [Google Scholar]
  15. Hutchinson C. R., Fujii I. 1995; Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol 49:201–238 [CrossRef]
    [Google Scholar]
  16. Ichinose K., Surti C., Taguchi T., Malpartida F., Booker-Milburn K. I., Stephenson G. R., Ebizuka Y., Hopwood D. A. 1999; Proof that the actVI genetic region of Streptomyces coelicolor A3(2) is involved in stereospecific pyran ring formation in the biosynthesis of actinorhodin. Bioorg Med Chem Lett 9:395–400 [CrossRef]
    [Google Scholar]
  17. Kantola J., Blanco G., Hautala A., Kunnari T., Hakala J., Mendez C., Ylihonko K., Mäntsälä P., Salas J. 1997; Folding of the polyketide chain is not dictated by minimal polyketide synthase in the biosynthesis of mithramycin and anthracycline. Chem Biol 4:751–755 [CrossRef]
    [Google Scholar]
  18. Kunnari T., Tuikkanen J., Hautala A., Hakala J., Ylihonko K., Mäntsälä P. 1997; Isolation and characterization of 8-demethoxy steffimycins and generation of 2,8-demethoxy steffimycins in Streptomyces steffisburgensis by the nogalamycin biosynthesis genes. J Antibiot 50:496–501 [CrossRef]
    [Google Scholar]
  19. Lomovskaya N., Doi-Katayama Y., Filippini S., Nastro C., Fonstein L., Gallo M., Colombo A. L., Hutchinson C. R. 1998; The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180:2379–2386
    [Google Scholar]
  20. Lomovskaya N., Otten S. L., Doi-Katayama Y.8 other authors 1999; Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J Bacteriol 181:305–318
    [Google Scholar]
  21. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. 1993; Engineered biosynthesis of novel polyketides. Science 262:1546–1550 [CrossRef]
    [Google Scholar]
  22. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. 1995; Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375:549–554 [CrossRef]
    [Google Scholar]
  23. Madduri K., Hutchinson C. R. 1995; Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:3879–3884
    [Google Scholar]
  24. Malpartida F., Hallam S. E., Kieser H. M.9 other authors 1987; Homology between Streptomyces genes coding for synthesis of different polyketides and its use to clone antibiotic biosynthetic genes. Nature 325:818–821 [CrossRef]
    [Google Scholar]
  25. Oki T., Matsuzawa Y., Yoshimoto A.10 other authors 1975; New antitumour antibiotics, aclacinomycins A and B. J Antibiot 28:830–834 [CrossRef]
    [Google Scholar]
  26. Rajgarhia V. B., Strohl W. R. 1997; Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. J Bacteriol 179:2690–2696
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. 1986; Construction and characterization of a series of multicopy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase from Tn5 as indicator. Mol Gen Genet 203:468–478 [CrossRef]
    [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  30. Ylihonko K., Hakala J., Niemi J., Lundell J., Mäntsälä P. 1994; Isolation and characterization of aclacinomycin A-non-producing Streptomyces galilaeus (ATCC 31615) mutants. Microbiology 140:1359–1365 [CrossRef]
    [Google Scholar]
  31. Ylihonko K., Hakala J., Kunnari T., Mäntsälä P. 1996a; Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogalamycin biosynthesis genes. Microbiology 142:1965–1972 [CrossRef]
    [Google Scholar]
  32. Ylihonko K., Tuikkanen J., Jussila S., Cong L., Mäntsälä P. 1996b; A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early-block mutations in the anthracycline pathway. Mol Gen Genet 251:113–120
    [Google Scholar]
  33. Zawada R., Khosla C. 1997; Domain analysis of the molecular recognition features of aromatic polyketide synthase subunits. J Biol Chem 272:16184–16188 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-155
Loading
/content/journal/micro/10.1099/00221287-146-1-155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error