1887

Abstract

Glycine betaine is mostly known as an osmoprotectant. It is involved in the osmotic adaptation of eukaryotic and bacterial cells, and accumulates up to 1 M inside cells subjected to an osmotic upshock. Since, like other osmolytes, it can act as a protein stabilizer, its thermoprotectant properties were investigated. , like protein chaperones such as DnaK, glycine betaine and choline protect citrate synthase against thermodenaturation, and stimulate its renaturation after urea denaturation. , the internal concentration of glycine betaine is neither increased nor decreased after heat shock (this contrasts with a massive increase after osmotic upshock). However, even in exponential-phase bacteria grown in usual minimal salts media, the internal glycine betaine concentration attains levels (around 50 mM) which can protect proteins against thermodenaturation . Furthermore, glycine betaine and choline restore the viability of a deletion mutant at 42 °C, suggesting that glycine betaine not only acts as a thermoprotectant , but also acts as a thermoprotectant for cells .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2543
1999-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452543a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2543&mimeType=html&fmt=ahah

References

  1. Arakawa T., Timasheff S. N. 1985; The protection of proteins by osmolytes. Biophys J 47:411–414 [CrossRef]
    [Google Scholar]
  2. Boch J., Kempf B., Bremer E. 1994; Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371
    [Google Scholar]
  3. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F., Kiefhaber T. 1991; GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591 [CrossRef]
    [Google Scholar]
  4. Chambers S., Cunin C. M. 1985; The osmoprotective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea. J Infect Dis 152:1308–1316 [CrossRef]
    [Google Scholar]
  5. Conska L. N., Epstein W. 1996; Osmoregulation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1210–1223Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Georgopoulos C., Liberek K., Zylicz M., Ang D. 1994; Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In The Biology of the Heat Shock Proteins and Molecular Chaperones pp 209–250Edited by Morimoto R. I., Tissieres A., Georgopoulos C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Gowrishankar J. 1986; proP-mediated proline transport also plays a role in Escherichia coli osmoregulation. J Bacteriol 166:331–333
    [Google Scholar]
  8. Hand S. C., Somero G. N. 1982; Urea and methylamine effects on rabbit muscle phosphofructokinase. J Biol Chem 257:734–741
    [Google Scholar]
  9. Hendrick J. P., Hartl F. U. 1993; Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62:349–384 [CrossRef]
    [Google Scholar]
  10. Hengge-Aronis R. 1996; Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1497–1512Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hengge-Aronis R., Klein W., Lange R, Rimmele M., Boos W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924
    [Google Scholar]
  12. Ikuta S., Matuura K., Imamura S., Misaki H., Horiuti Y. 1977; Oxidative pathway of choline to betaine in the soluble fraction prepared from Arthrobacter globiformis. J Biochem 82:157–163
    [Google Scholar]
  13. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., McDougall J., Strom A. R. 1991; DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064 [CrossRef]
    [Google Scholar]
  14. Lanfald B., Strom A. R. 1986; Choline-glycine pathway confers a high level of osmotic tolerance in Escherichia coli.. J Bacteriol 165:849–855
    [Google Scholar]
  15. May G., Faatz E., Villarejo M., Bremer E. 1986; Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. Mol Gen Genet 205:225–233 [CrossRef]
    [Google Scholar]
  16. Miller J. H. 1958; Experiments in Molecular Genetics. p. 431 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Milner J. L. S., Grothe S., Wood J. M. 1988; Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K-12. J Biol Chem 263:14900–14905
    [Google Scholar]
  18. Moses V., Sharp P. B. 1970; Intermediates between metabolic intermediates and β-galactosidase of Escherichia coli. Biochem J 118:491–495
    [Google Scholar]
  19. Paek K.-H., Walker G. C. 1987; Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–290
    [Google Scholar]
  20. Perroud B., Le Rudelier D. 1985; Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol 161:393–401
    [Google Scholar]
  21. Pollard A., Wyn Jones R. G. 1979; Metabolic engineering of glycine betaine synthesis. Planta 144:291–298 [CrossRef]
    [Google Scholar]
  22. Richarme G., Caldas T. 1997; Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272:15607–15612 [CrossRef]
    [Google Scholar]
  23. Singer M. A., Lindquist S. 1998; Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648 [CrossRef]
    [Google Scholar]
  24. Stirling D. A., Hulton C. S. J., Wadell L., Park S. F., Stuart G. S. A. B., Booth I. R., Higgins C. F. 1989; Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Mol Microbiol 3:1025–1038 [CrossRef]
    [Google Scholar]
  25. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861
    [Google Scholar]
  26. Strom A. R., Falkenberg P., Landfald B. 1986; Genetics of osmoregulation in Escherichia coli uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39:79–86 [CrossRef]
    [Google Scholar]
  27. Talzelt J., Prusiner S. B., Welch W. J. 1996; Chemical chaperones interfere with the formation of scrapie protein. EMBO J 15:6363–6373
    [Google Scholar]
  28. Yancey P. H., Somero G. N. 1979; Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183:317–323
    [Google Scholar]
  29. Yancey P. H., Clark M. E., Hand S. T., Bowlus P. D., Somero G. N. 1982; Living with water stress: evolution of osmolyte systems. Science 217:1214–1222 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2543
Loading
/content/journal/micro/10.1099/00221287-145-9-2543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error