1887

Abstract

Glycine betaine is mostly known as an osmoprotectant. It is involved in the osmotic adaptation of eukaryotic and bacterial cells, and accumulates up to 1 M inside cells subjected to an osmotic upshock. Since, like other osmolytes, it can act as a protein stabilizer, its thermoprotectant properties were investigated. , like protein chaperones such as DnaK, glycine betaine and choline protect citrate synthase against thermodenaturation, and stimulate its renaturation after urea denaturation. , the internal concentration of glycine betaine is neither increased nor decreased after heat shock (this contrasts with a massive increase after osmotic upshock). However, even in exponential-phase bacteria grown in usual minimal salts media, the internal glycine betaine concentration attains levels (around 50 mM) which can protect proteins against thermodenaturation . Furthermore, glycine betaine and choline restore the viability of a deletion mutant at 42 °C, suggesting that glycine betaine not only acts as a thermoprotectant , but also acts as a thermoprotectant for cells .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2543
1999-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452543a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2543&mimeType=html&fmt=ahah

References

  1. Arakawa, T. & Timasheff, S. N. ( 1985; ). The protection of proteins by osmolytes. Biophys J 47, 411-414.[CrossRef]
    [Google Scholar]
  2. Boch, J., Kempf, B. & Bremer, E. ( 1994; ). Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176, 5364-5371.
    [Google Scholar]
  3. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. & Kiefhaber, T. ( 1991; ). GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586-1591.[CrossRef]
    [Google Scholar]
  4. Chambers, S. & Cunin, C. M. ( 1985; ). The osmoprotective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea. J Infect Dis 152, 1308-1316.[CrossRef]
    [Google Scholar]
  5. Conska, L. N. & Epstein, W. (1996). Osmoregulation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1210–1223. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  6. Georgopoulos, C., Liberek, K., Zylicz, M. & Ang, D. ( 1994; ). Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In The Biology of the Heat Shock Proteins and Molecular Chaperones, pp. 209-250. Edited by R. I. Morimoto, A. Tissieres & C. Georgopoulos. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  7. Gowrishankar, J. ( 1986; ). proP-mediated proline transport also plays a role in Escherichia coli osmoregulation. J Bacteriol 166, 331-333.
    [Google Scholar]
  8. Hand, S. C. & Somero, G. N. ( 1982; ). Urea and methylamine effects on rabbit muscle phosphofructokinase. J Biol Chem 257, 734-741.
    [Google Scholar]
  9. Hendrick, J. P. & Hartl, F. U. ( 1993; ). Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 62, 349-384.[CrossRef]
    [Google Scholar]
  10. Hengge-Aronis, R. (1996). Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1497–1512. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  11. Hengge-Aronis, R., Klein, W., Lange, R., Rimmele, M. & Boos, W. ( 1991; ). Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary phase thermotolerance in Escherichia coli. J Bacteriol 173, 7918-7924.
    [Google Scholar]
  12. Ikuta, S., Matuura, K., Imamura, S., Misaki, H. & Horiuti, Y. ( 1977; ). Oxidative pathway of choline to betaine in the soluble fraction prepared from Arthrobacter globiformis. J Biochem 82, 157-163.
    [Google Scholar]
  13. Lamark, T., Kaasen, I., Eshoo, M. W., Falkenberg, P., McDougall, J. & Strom, A. R ( 1991; ). DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5, 1049-1064.[CrossRef]
    [Google Scholar]
  14. Lanfald, B. & Strom, A. R. ( 1986; ). Choline-glycine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165, 849-855.
    [Google Scholar]
  15. May, G., Faatz, E., Villarejo, M. & Bremer, E. ( 1986; ). Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. Mol Gen Genet 205, 225-233.[CrossRef]
    [Google Scholar]
  16. Miller, J. H. (1972). Experiments in Molecular Genetics, p. 431. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Milner, J. L. S., Grothe, S. & Wood, J. M. ( 1988; ). Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K-12. J Biol Chem 263, 14900-14905.
    [Google Scholar]
  18. Moses, V. & Sharp, P. B. ( 1970; ). Intermediates between metabolic intermediates and β-galactosidase of Escherichia coli. Biochem J 118, 491-495.
    [Google Scholar]
  19. Paek, K.-H. & Walker, G. C. ( 1987; ). Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169, 283-290.
    [Google Scholar]
  20. Perroud, B. & Le Rudelier, D. ( 1985; ). Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol 161, 393-401.
    [Google Scholar]
  21. Pollard, A. & Wyn Jones, R. G. ( 1979; ). Metabolic engineering of glycine betaine synthesis. Planta 144, 291-298.[CrossRef]
    [Google Scholar]
  22. Richarme, G. & Caldas, T. ( 1997; ). Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272, 15607-15612.[CrossRef]
    [Google Scholar]
  23. Singer, M. A. & Lindquist, S. ( 1998; ). Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1, 639-648.[CrossRef]
    [Google Scholar]
  24. Stirling, D. A., Hulton, C. S. J., Wadell, L., Park, S. F., Stuart, G. S. A. B., Booth, I. R. & Higgins, C. F. ( 1989; ). Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Mol Microbiol 3, 1025-1038.[CrossRef]
    [Google Scholar]
  25. Stock, J. B., Rauch, B. & Roseman, S. ( 1977; ). Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252, 7850-7861.
    [Google Scholar]
  26. Strom, A. R., Falkenberg, P. & Landfald, B. ( 1986; ). Genetics of osmoregulation in Escherichia coli uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39, 79-86.[CrossRef]
    [Google Scholar]
  27. Talzelt, J., Prusiner, S. B. & Welch, W. J. ( 1996; ). Chemical chaperones interfere with the formation of scrapie protein. EMBO J 15, 6363-6373.
    [Google Scholar]
  28. Yancey, P. H. & Somero, G. N. ( 1979; ). Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183, 317-323.
    [Google Scholar]
  29. Yancey, P. H., Clark, M. E., Hand, S. T., Bowlus, P. D. & Somero, G. N. ( 1982; ). Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2543
Loading
/content/journal/micro/10.1099/00221287-145-9-2543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error