The promoter region contains a novel upstream activator Free

Abstract

An –mycobacterial shuttle vector, pJCluc, containing a luciferase reporter gene, was constructed and used to analyse the promoter. A 19 kb region immediately upstream of promoted expression of the luciferase gene in and . A smaller promoter fragment (559 bp) promoted expression with equal efficiency, and was used in all further studies. Two transcription start sites were mapped by primer extension analysis to 47 and 56 bp upstream of the GTG initiation codon. Putative promoters associated with these show similarity to previously identified mycobacterial promoters. Deletions in the promoter fragment, introduced with BAL-31 nuclease and restriction endonucleases, revealed that a region between 559 and 448 bp upstream of the translation initiation codon, designated the upstream activator region (UAR), is essential for promoter activity in , and is required for optimal activity in . The UAR was also able to increase expression from the promoter 15-fold in and 12-fold in . An alternative promoter is active in deletion constructs in which either the UAR or the promoters identified here are absent. Expression from the promoter peaks during late exponential phase, and declines during stationary phase. The promoter is induced by ascorbic acid, and is repressed by oxygen limitation and growth at elevated temperatures. The promoter constructs exhibited similar activities in BCG as they did in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2507
1999-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452507a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2507&mimeType=html&fmt=ahah

References

  1. Aldovini A., Young R. A. 1991; Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature 351:479–482 [CrossRef]
    [Google Scholar]
  2. Altuvia S., Almiron M., Huisman G., Kolter R., Storz G. 1994; The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology Cambridge, MA: Wiley Interscience;
    [Google Scholar]
  4. Barletta R. G., Kim D. D., Snapper S. B., Bloom B. R., Jacobs W. R. Jr 1992; Identification of expression signals of the mycobacteriophages Bxb1, L1 and TM4 using the Escherichia–Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. J Gen Microbiol 138:23–30 [CrossRef]
    [Google Scholar]
  5. Bashyam M. D., Kaushal D., Dasgupta S. K., Tyagi A. K. 1996; A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J Bacteriol 178:4847–4853
    [Google Scholar]
  6. Beggs M. L., Crawford J. T., Eisenach K. D. 1995; Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J Bacteriol 177:4836–4840
    [Google Scholar]
  7. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. 1985; Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762 [CrossRef]
    [Google Scholar]
  8. Dellagostin O. A., Esposito G., Eales L. J., Dale J. W., McFadden J. 1995; Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141:1785–1792 [CrossRef]
    [Google Scholar]
  9. Deretic V., Philipp W., Dhandayuthapani S., Mudd M. H., Curcic R., Garbe T., Heym B., Via L. E., Cole S. T. 1995; Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol 17:889–900 [CrossRef]
    [Google Scholar]
  10. Dhandayuthapani S., Mudd M., Deretic V. 1997; Interactions of OxyR with the promoter region of the oxyR and ahpC genes from Mycobacterium leprae and Mycobacterium tuberculosis. J Bacteriol 179:2401–2409
    [Google Scholar]
  11. Dussurget O., Rodriguez M., Smith I. 1996; An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 22:535–544 [CrossRef]
    [Google Scholar]
  12. Farr S. B., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585
    [Google Scholar]
  13. Graves M. C., Rabinowitz J. C. 1986; and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for ‘extended’ promoter elements in gram-positive organisms. J Biol Chem 261:11409–11415
    [Google Scholar]
  14. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [CrossRef]
    [Google Scholar]
  15. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. 1993; Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 175:4255–4259
    [Google Scholar]
  16. Heym B., Stavropoulos E., Honore N., Domenech P., Saint-Joanis B., Wilson T. M., Collins D. M., Colston M. J., Cole S. T. 1997; Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 65:1395–1401
    [Google Scholar]
  17. Jackett P. S., Aber V. R., Lowrie D. B. 1978; Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 104:37–45 [CrossRef]
    [Google Scholar]
  18. Jacobs W. R. Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  19. Kieser S., Moss M. T., Dale J. W., Hopwood D. A. 1986; Cloning and expression of Mycobacterium bovis BCG DNA in Streptomyces lividans. J Bacteriol 168:72–80
    [Google Scholar]
  20. Kremer L., Baulard A., Estaquier J., Content J., Capron A., Locht C. 1995; Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol 177:642–653
    [Google Scholar]
  21. Labidi A., David H. L., Roulland-Dussoix D. 1985; Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var. fortuitum plasmid pAL5000. Ann Inst Pasteur Microbiol 136B:209–215
    [Google Scholar]
  22. Levin M. E., Hatfull G. F. 1993; RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol 8:277–285 [CrossRef]
    [Google Scholar]
  23. Loewen P. C., Switala J., Triggs-Raine B. L. 1985; Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys 243:144–149 [CrossRef]
    [Google Scholar]
  24. Middlebrook G., Cohn M. L. 1953; Some observations on the pathogenicity of isoniazid-resistant varients of tubercle bacilli. Science 118:297–299 [CrossRef]
    [Google Scholar]
  25. Miller J. H. 1958 A Short Course in Bacterial Genetics Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mitchison D. A., Wallace J. G., Bhatia A. L., Selkon J. B., Subbaiah J., Lancaster M. C. 1960; A comparison of the virulence in guinea pigs of South India and British tubercle bacilli. Tubercle 41:1–22 [CrossRef]
    [Google Scholar]
  27. Moran C. P. Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346 [CrossRef]
    [Google Scholar]
  28. Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. 1986; Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83:8059–8063 [CrossRef]
    [Google Scholar]
  29. Movahedzadeh F., Colston M. J., Davis E. O. 1997; Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-damaging agents suggests that two modes of regulation exist. J Bacteriol 179:3509–3518
    [Google Scholar]
  30. Mukhopadhyay S., Schellhorn H. E. 1994; Induction of Escherichia coli hydroperoxidase I by acetate and other weak acids. J Bacteriol 176:2300–2307
    [Google Scholar]
  31. Mulder M. A., Zappe H., Steyn L. M. 1997; Mycobacterial promoters. Tubercle Lung Dis 78:211–223 [CrossRef]
    [Google Scholar]
  32. Mulvey M. R., Sorby P. A., Triggs-Raine B. L., Loewen P. C. 1988; Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene 73:337–345 [CrossRef]
    [Google Scholar]
  33. Murray A., Winter N., Lagranderie M., Hill D. F., Rauzier J., Timm J., Leclerc C., Morlarty K. M., Gicquel B. 1992; Expression of Escherichia coli β-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol 6:3331–3342 [CrossRef]
    [Google Scholar]
  34. Nesbit C. E., Levin M. E., Donnelly-Wu M. K., Hatfull G. F. 1995; Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol 17:1045–1056 [CrossRef]
    [Google Scholar]
  35. Pagan-Ramos E., Song J., McFalone M., Mudd M. H., Deretic V. 1998; Oxidative stress response and characterization of the oxyR–ahpC and furA–katG loci in Mycobacterium marinum. J Bacteriol 180:4856–4864
    [Google Scholar]
  36. Predich M., Doukhan L., Nair G., Smith I. 1995; Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol 15:355–366 [CrossRef]
    [Google Scholar]
  37. Prioli R. P., Tanna A., Brown I. N. 1985; Rapid methods for counting mycobacteria – comparison of methods for extraction of mycobacterial adenosine triphosphate (ATP) determined by firefly luciferase assay. Tubercle 66:99–108 [CrossRef]
    [Google Scholar]
  38. Raibaud O., Schwartz M. 1984; Positive control of transcription initiation in bacteria. Annu Rev Genet 18:173–206 [CrossRef]
    [Google Scholar]
  39. Ramesh G., Gopinathan K. P. 1995; Cloning and characterization of mycobacteriophage I3 promoters. Indian J Biochem Biophys 32:361–367
    [Google Scholar]
  40. Richter H. E., Loewen P. C. 1981; Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun 100:1039–1046 [CrossRef]
    [Google Scholar]
  41. Rocha E. R., Smith C. J. 1995; Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177:3111–3119
    [Google Scholar]
  42. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. 1993; A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262:1407–1413 [CrossRef]
    [Google Scholar]
  43. Rouse D. A., Morris S. L. 1995; Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis. Infect Immun 63:1427–1433
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  46. Schnell S., Steinman H. M. 1995; Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus. J Bacteriol 177:5924–5929
    [Google Scholar]
  47. Sherman D. R., Mdluli K., Hickey M. J., Arain T. M., Morris S. L., Barry C. E.3rd, Stover C. K. 1996; Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643 [CrossRef]
    [Google Scholar]
  48. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R. Jr 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991 [CrossRef]
    [Google Scholar]
  49. Snapper S. B., Melton R. E., Kieser T., Mustafa S., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  50. Stanley P. E., McCarthy B. J., Smither R. 1989 Rapid Methods in Microbiology Oxford: Blackwell Scientific;
    [Google Scholar]
  51. Stolt P., Stoker N. G. 1996; Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiology 142:2795–2802 [CrossRef]
    [Google Scholar]
  52. Storz G., Tartaglia L. A., Ames B. N. 1990; Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194 [CrossRef]
    [Google Scholar]
  53. Stover C. K., de la Cruz V. F., Fuerst T. R.11 other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460 [CrossRef]
    [Google Scholar]
  54. Suzuki Y., Nagata A., Yamada T. 1991; Analysis of the promoter region in the rRNA operon from Mycobacterium bovis BCG. Antonie Leeuwenhoek 60:7–11 [CrossRef]
    [Google Scholar]
  55. Tartaglia L. A., Storz G., Ames B. N. 1989; Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol 210:709–719 [CrossRef]
    [Google Scholar]
  56. Toledano M. B., Kullik I., Trinh F., Baird P. T., Schneider T. D., Storz G. 1994; Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909 [CrossRef]
    [Google Scholar]
  57. VanBogelen R. A., Kelley P. M., Neidhardt F. C. 1987; Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32
    [Google Scholar]
  58. Wayne L. G., Sramek H. A. 1994; Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38:2054–2058 [CrossRef]
    [Google Scholar]
  59. Wilson T. M., de Lisle G. W., Collins D. M. 1995; Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 15:1009–1015 [CrossRef]
    [Google Scholar]
  60. Winder F. G. 1960; Catalase and peroxidase in mycobacteria: possible relationship to the mode of action of isoniazid. Am Rev Resp Dis 81:68–78
    [Google Scholar]
  61. Zabeau M., Stanley K. K. 1982; Enhanced expression of cro– β-galactosidase fusion proteins under the control of the PR promoter of bacteriophage λ. EMBO J 1:1217–1224
    [Google Scholar]
  62. Zhang Y., Heym B., Allen B., Young D., Cole S. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593 [CrossRef]
    [Google Scholar]
  63. Zhou Y., Merkel T. J., Ebright R. H. 1994a; Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). II. Role of class I and class II CAP-dependent promoters. J Mol Biol 243:603–610 [CrossRef]
    [Google Scholar]
  64. Zhou Y., Pendergrast P. S., Bell A., Williams R., Busby S., Ebright R. H. 1994b; The functional subunit of a dimeric transcription activator protein depends on promoter architecture. EMBO J 13:4549–4557
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2507
Loading
/content/journal/micro/10.1099/00221287-145-9-2507
Loading

Data & Media loading...

Most cited Most Cited RSS feed