1887

Abstract

Cholera remains an important public health problem in many parts of the world and the availability of an effective cholera vaccine is important for the prevention of cholera in the countries affected by this disease. Despite the apearance in 1992 of a new serogroup, O139, of , most of the cholera outbreaks are still caused by O1 biotype El Tor. Vaccine trials in Asia from 1968 to 1971, and studies of the production of serotype-specific antiserum in rabbits and of the protective activity of monoclonal antibodies against diarrhoeal disease in neonatal mice, have led to the conclusion that the Ogawa serotype contains a specific antigenic determinant whereas the Inaba serotype contains a different antigenic determinant that cross-reacts with the Ogawa serotype. By studying the binding of anti-Ogawa monoclonal antibodies to synthetic oligosaccharide fragments mimicking the Ogawa O-specific polysaccharide, it has been shown that the terminal monosaccharide, bearing the 2--methyl group in the O-specific polysaccharide, is most probably the serotype-specific determinant for the Ogawa strain. However, study of the binding of a monoclonal antibody recognizing both Ogawa and Inaba serotypes suggested partial recognition of the core as well as of the O-specific polysaccharide of the LPS of O1. To further characterize this antigenic determinant that is common to the Ogawa and Inaba serotypes, the core and the O-specific polysaccharide linked to the core of O1 LPS were purified by preparative electrophoresis. The O-specific polysaccharide linked to the core was subjected to periodate oxidation to destroy sugars from the core. Binding studies of these purified saccharide fragments to a monoclonal antibody which is protective in mice and specific to the antigenic determinant common to Ogawa and Inaba serotypes showed that both the core and the O-specific polysaccharide are involved in this common antigenic determinant. This explains how the presence or the absence of the Ogawa-specific antigenic determinant would lead to the expression of two independent antigenic determinants of O1, one specific to the Ogawa serotype and the other common to both Ogawa and Inaba serotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2477
1999-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452477a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2477&mimeType=html&fmt=ahah

References

  1. Adams L. B., Henk M. C., Siebeling R. J. 1988; Detection of Vibrio cholerae with monoclonal antibodies specific for serovar O1 lipopolysaccharide. J Clin Microbiol 26:1801–1809
    [Google Scholar]
  2. Apter F. M., Michetti P., Winner L. S. III, Mack J. A., Mekalanos J. J., Neutra M. R. 1993; Analysis of the roles of antilipolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect Immun 61:5279–5285
    [Google Scholar]
  3. Bougoudogo F., Vely F., Nato F., Boutonnier A., Gounon P., Mazié J.-C., Fournier J.-M. 1995; Protective activities of serum immunoglobulin G on the mucosal surface to Vibrio cholerae O1. Bull Inst Pasteur 93:273–283 [CrossRef]
    [Google Scholar]
  4. Brayton P. R., Tamplin M. L., Huq A., Colwell R. R. 1987; Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl Environ Microbiol 53:2862–2865
    [Google Scholar]
  5. Colwell R. R., Hasan J. A. K., Huq A.7 other authors 1992; Development and evaluation of a rapid, simple, sensitive, monoclonal antibody-based co-agglutination test for direct detection of Vibrio cholerae O1. FEMS Microbiol Lett 97:215–220 [CrossRef]
    [Google Scholar]
  6. Donovan T. J., Furniss A. L. 1982; Quality of antisera used in the diagnosis of cholera. Lancet 2:866–868
    [Google Scholar]
  7. Goldstein I. J., Hay G. W., Lewis B. A., Smith F. 1970; Controlled degradation of polysaccharides by periodate oxydation, reduction, and hydrolysis. Methods Carbohydr Chem 5:361–370
    [Google Scholar]
  8. Gupta R. K., Szu S. C., Finkelstein R. A., Robbins J. B. 1992; Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun 60:3201–3208
    [Google Scholar]
  9. Gupta R. K., Taylor D. N., Bryla D. A., Robbins J. B., Szu S. C. 1998; Phase 1 evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide-cholera toxin conjugates in adult volunteers. Infect Immun 66:3095–3099
    [Google Scholar]
  10. Gustafsson B. 1984; Monoclonal antibody-based enzyme-linked immunosorbent assays for identification and serotyping of Vibrio cholerae O1. J Clin Microbiol 20:1180–1185
    [Google Scholar]
  11. Gustafsson B., Holme T. 1983; Monoclonal antibodies against group- and type-specific lipopolysaccharide antigens of Vibrio cholerae O:1. J Clin Microbiol 18:480–485
    [Google Scholar]
  12. Gustafsson B., Holme T. 1985a; Rapid detection of Vibrio cholerae O:1 by motility inhibition and immunofluorescence with monoclonal antibodies. Eur J Clin Microbiol 4:291–294 [CrossRef]
    [Google Scholar]
  13. Gustafsson B., Holme T. 1985b; Immunological characterization of Vibrio cholerae O:1 lipopolysaccharide, O-side chain, and core with monoclonal antibodies. Infect Immun 49:275–280
    [Google Scholar]
  14. Gustafsson B., Rosen A., Holme T. 1982; Monoclonal antibodies against Vibrio cholerae lipopolysaccharide. Infect Immun 38:449–454
    [Google Scholar]
  15. Hancock I. C., Poxton I. R. 1988; Chemical analysis of envelope polymers. In Bacterial Cell Surface Techniques pp 178Edited by Hancock I. C., Poxton I. R. Chichester: Wiley;
    [Google Scholar]
  16. Hisatsune K., Kondo S., Isshiki Y., Iguchi T., Haishima Y. 1993; Occurrence of 2-O-methyl-N-(3-deoxy-l-glycero-tetronyl)-d-perosamine (4-amino-4,6-dideoxy-d-manno-pyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem Biophys Res Commun 190:302–307 [CrossRef]
    [Google Scholar]
  17. Hochstein H. D. 1990; Role of the FDA in regulating the Limulus amoebocyte lysate test. In Clinical Applications of the Limulus Amoebocyte Lysate Test pp 38–49Edited by Prior R. B. Boca Raton, FL: CRC Press;
    [Google Scholar]
  18. Iredell J. R., Stroeher U. H., Ward H. M., Manning P. A. 1998; Lipopolysaccharide O-antigen expression and the effect of its absence on virulence in rfb mutants of Vibrio cholerae O1. FEMS Immunol Med Microbiol 20:45–54 [CrossRef]
    [Google Scholar]
  19. Ito T., Higuchi T., Hirobe M., Hiramatsu K., Yokota T. 1994; Identification of a novel sugar, 4-amino-4,6-dideoxy-2-O-methylmannose in the lipopolysaccharide of Vibrio cholerae O1 serotype Ogawa. Carbohydr Res 256:113–128 [CrossRef]
    [Google Scholar]
  20. Kenne L., Lindberg B., Unger P., Gustafsson B., Holme T. 1982; Structural studies of the Vibrio cholerae O-antigen. Carbohydr Res 100:341–349 [CrossRef]
    [Google Scholar]
  21. Krauss J. H., Weckesser J., Mayer H. 1988; Electrophoretic analysis of lipopolysaccharides of purple non-sulfur bacteria. Int J Syst Bacteriol 38:157–163 [CrossRef]
    [Google Scholar]
  22. Le Blay K., Caroff M., Richards J. C., Chaby R. 1994; Specific and cross-reacting monoclonal antibodies to Bordetella parapertussis and Bordetella bronchiseptica lipopolysaccharides. Microbiology 140:2459–2465 [CrossRef]
    [Google Scholar]
  23. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117 [CrossRef]
    [Google Scholar]
  24. Levine M. L., Pierce N. F. 1992; Immunity and vaccine development. In Cholera pp 285–327Edited by Barua D., Greenough W. B. III New York: Plenum;
    [Google Scholar]
  25. Lüllau E., Heyse S., Vogel H., Marison I., von Stockar U., Kraehenbuhl J. P., Corthésy B. 1996; Antigen binding properties of purified immunoglobulin A and reconstituted secretory immunoglobulin A antibodies. J Biol Chem 271:16300–16309 [CrossRef]
    [Google Scholar]
  26. Mosley W. H., Woodward W. E., Aziz K. M. A., Mizanur Rahman A. S. M., Alauddin Chowdhury, A. K. M, Ahmed A., Feeley J. C. 1970; The 1968–1969 cholera-vaccine field trial in rural East Pakistan: effectiveness of monovalent Ogawa and Inaba vaccines and a purified Inaba antigen, with comparative results of serological and animal protection tests. J Infect Dis 121:S1–S9 [CrossRef]
    [Google Scholar]
  27. Mosley W. H., Aziz K. M. A., Mizanur Rahman A. S. M., Alauddin Chowdhury A. K. M., Ahmed A. 1973; Field trials of monovalent Ogawa and Inaba cholera vaccines in rural Bangladesh: three years of observation. Bull WHO 49:381–387
    [Google Scholar]
  28. Philippines Cholera Committee 1973; A controlled field trial of the effectiveness of monovalent classical and El Tor cholera vaccines in the Philippines. Bull WHO 49:13–19
    [Google Scholar]
  29. Ramamurthy T., Garg S., Nair G. B. 1995; Monoclonal antibodies against Ogawa specific and Ogawa-Inaba common antigenic determinants of Vibrio cholerae O1 and their diagnostic utility. Indian J Med Res 101:10–12
    [Google Scholar]
  30. Reuhs B. L., Carlson R. W., Kim J. S. 1993; Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol 175:3570–3580
    [Google Scholar]
  31. Sakazaki R., Tamura K. 1971; Somatic antigen variation in Vibrio cholerae. Jpn J Med Sci Biol 24:93–100 [CrossRef]
    [Google Scholar]
  32. Schägger H., Von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  33. Stroeher U. H., Karageorgos L. E., Morona R., Manning P. A. 1992; Serotype conversion in Vibrio cholerae O1. Proc Natl Acad Sci USA 89:2566–2570 [CrossRef]
    [Google Scholar]
  34. Sugiyama J., Gondaira F., Matsuda J., Soga M., Terada Y. 1987; New method for serological typing of Vibrio cholerae O1 using a monoclonal antibody-sensitized latex agglutination test. Microbiol Immunol 31:387–391 [CrossRef]
    [Google Scholar]
  35. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  36. Vinogradov E. V., Bock K., Holst O., Brade H. 1995; The structure of the lipid A-core region of the lipopolysaccharides from Vibrio cholerae O1 smooth strain 569B (Inaba) and rough mutant strain 95R (Ogawa). Eur J Biochem 233:152–158 [CrossRef]
    [Google Scholar]
  37. Wang J., Villeneuve S., Zhang J.11 other authors 1998; On the antigenic determinants of the lipopolysaccharides of Vibrio cholerae O:1, serotypes Ogawa and Inaba. J Biol Chem 273:2777–2783 [CrossRef]
    [Google Scholar]
  38. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of procedure. Methods Carbohydr Chem 5:83–87
    [Google Scholar]
  39. Winner L. S. III, Mack J., Weltzin R., Mekalanos J. J., Kraehenbuhl J. P., Neutra M. R. 1991; New model for analysis of mucosal immunity: intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumours protects against Vibrio cholerae infection. Infect Immun 59:977–982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2477
Loading
/content/journal/micro/10.1099/00221287-145-9-2477
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error