1887

Abstract

The gene was cloned by detection of a chromosomal restriction fragment hybridizing with each of two degenerate oligonucleotides that corresponded to Pro-Glu and Pro-Lys repeats characteristic of known TonB proteins. The gene was situated upstream of and homologues and downstream of a putative Fur-regulated promoter. Hybridization results indicated that the operon and flanking regions were highly conserved between and . Disruption of in resulted in inability to grow in iron-limiting media, and inability to utilize alcaligin, enterobactin, ferrichrome, desferroxamine B, haemin and haemoglobin. Although it was not possible to inactivate in a clinical isolate, was disrupted in a laboratory strain previously selected for the ability to grow on Luria–Bertani medium. This mutant shared a similar iron complex utilization deficient phenotype with the mutant. The operon present on a plasmid did not complement an mutant, but inefficient reconstitution of enterobactin utilization was observed in one mutant harbouring plasmid copies of the homologue and operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2453
1999-09-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452453a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2453&mimeType=html&fmt=ahah

References

  1. Ahmer B. M. M., Thomas M. G., Larson R. A., Postle K. 1995; Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability. J Bacteriol177:4742–4747
    [Google Scholar]
  2. Anton M., Heller K. J.. 1991; Functional analysis of a C-terminally altered TonB protein of Escherichia coli.. Gene105:23–29[CrossRef]
    [Google Scholar]
  3. Beall B.. 1998; Two iron-regulated putative ferric siderophore receptor genes in Bordetella bronchoseptica and Bordetella pertussis.. Res Microbiol149:189–201[CrossRef]
    [Google Scholar]
  4. Beall B., Hoenes T.. 1997; An iron-regulated outer-membrane protein specific to Bordetella bronchiseptica and homologous to ferric siderophore receptors. Microbiology143:135–145[CrossRef]
    [Google Scholar]
  5. Beall B., Sanden G. N.. 1995a; Cloning and initial characterization of the Bordetella pertussis fur gene. Curr Microbiol30:1–4[CrossRef]
    [Google Scholar]
  6. Beall B., Sanden G. N.. 1995b; A Bordetella pertussis fepA homologue required for utilization of exogenous ferric enterobactin. Microbiology141:3193–3205[CrossRef]
    [Google Scholar]
  7. Bitter W., Tommassen J., Weisbeek P. J.. 1993; Identification and characterization of the exbB, exbD and tonB genes of Pseudomonas putida WCS358: their involvement in ferric pseudobactin transport. Mol Microbiol7:117–130[CrossRef]
    [Google Scholar]
  8. Braun V.. 1995; Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB–ExbB–ExbD-dependent receptor proteins. FEMS Microbiol Rev16:295–307[CrossRef]
    [Google Scholar]
  9. Braun V., Gaisser S., Hermann C., Kampfenkel K., Killmann H., Traub I.. 1996; Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity. J Bacteriol178:2836–2845
    [Google Scholar]
  10. Brickman T. J., Armstrong S. K.. 1995; gene restores iron repressibility of siderophore and protein expression to deregulated Bordetella bronchiseptica fur mutants. J Bacteriol177:268–270
    [Google Scholar]
  11. Brickman T. J., Armstrong S. K.. 1996a; Purification, spectroscopic analysis and biological activity of the macrocyclic dihydroxamate siderophore alcaligin produced by Bordetella bronchiseptica.. Biometals9:191–203
    [Google Scholar]
  12. Brickman T. J., Armstrong S. K.. 1996b; Colicins B and 1a as novel counterselective agents in interspecies conjugal DNA transfers from colicin-sensitive Escherichia coli donors to other gram-negative recipient species. Gene178:39–42[CrossRef]
    [Google Scholar]
  13. Brown D. R., Parker C. D.. 1987; Cloning of the filamentous hemagglutinin of Bordetella pertussis and its expression in Escherichia coli.. Infect Immun55:154–161
    [Google Scholar]
  14. Calderwood S. B., Mekalanos J. J.. 1987; Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol169:4759–4764
    [Google Scholar]
  15. Evans J. S., Levine B. A., Trayer I. P., Dorman C. J., Higgins C. F.. 1986; Sequence-imposed stuctural constraints in the TonB protein of E. coli.. FEBS Microbiol Lett208:211–216[CrossRef]
    [Google Scholar]
  16. Fischer E., Gunter K., Braun V.. 1989b; Involvement of ExbB and TonB in transport across outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB and ExbB. J Bacteriol171:5127–5134
    [Google Scholar]
  17. Gudmundsdottir A., Bell P. E., Lundrigan M. D., Bradbeer C., Kadner R. J.. 1989; Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol171:6526–6533
    [Google Scholar]
  18. Hannavy K., Barr G. C., Dorman C. J..7 other authors 1990; TonB protein of Salmonella typhimurium, a model for signal transduction between membranes. J Mol Biol216:897–910[CrossRef]
    [Google Scholar]
  19. Hantke K.. 1990; Dihydroxylbenzolyserine – a siderophore for E. coli.. FEMS Microbiol Lett67:5–8
    [Google Scholar]
  20. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255[CrossRef]
    [Google Scholar]
  21. Heller K. J., Kadner R. J., Günter K.. 1988; Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli.. Gene64:147–153[CrossRef]
    [Google Scholar]
  22. Henderson D. P., Payne S. M.. 1994; transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun62:5120–5125
    [Google Scholar]
  23. Higgins N. P., Hillyard D.. 1988; Primary structure and mapping of the hupA gene of Salmonella typhimurium.. J Bacteriol170:5751–5758
    [Google Scholar]
  24. Jarosik G. P., Sanders J. D., Cope L. D., Muller-Eberhard U., Hansen E. J.. 1994; A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun62:2470–2477
    [Google Scholar]
  25. Jaskula J. C., Letain T. E., Roof S. K., Skare J. T., Postle K.. 1994; Role of the TonB amino terminus in energy transduction between membranes. J Bacteriol176:2325–2338
    [Google Scholar]
  26. Kadner R. J.. 1990; Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol Microbiol4:2027–2033[CrossRef]
    [Google Scholar]
  27. Kampfenkel K., Braun V.. 1992; Membrane topology of the Escherichia coli ExbD protein. J Bacteriol174:5485–5487
    [Google Scholar]
  28. Kampfenkel K., Braun V.. 1993; Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli.. J Biol Chem268:6050–6057
    [Google Scholar]
  29. Karlsson M., Hannavy K., Higgins C. F.. 1993; A sequence-specific function for the N-terminal signal-like sequence of the TonB protein. Mol Microbiol8:379–388[CrossRef]
    [Google Scholar]
  30. Keen N. T., Kobayashi D., Trollinger D.. 1988; Improved broad-host range plasmids for DNA cloning in Gram-negative bacteria. Gene70:191–197[CrossRef]
    [Google Scholar]
  31. Klebba P. E., Rutz J. M., Liu J., Murphy C. K.. 1993; Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerg Biomembr25:603–611
    [Google Scholar]
  32. Koebnik R.. 1993; The molecular interaction between components of TonB–ExbBD–dependent and of the TolQRA-dependent bacterial uptake mechanisms. Mol Microbiol9:219[CrossRef]
    [Google Scholar]
  33. von Koenig C. H. W, Tacken A., Finger H.. 1988; Use of supplemented Stainer–Scholte broth for the isolation of Bordetella pertussis from clinical material. J Clin Microbiol26:2558–2560
    [Google Scholar]
  34. Larsen R. A., Wood G. E., Postle K.. 1993; The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol Microbiol10:943–953[CrossRef]
    [Google Scholar]
  35. Larsen R. A., Thomas M. G., Wood G. E., Postle K.. 1994; Partial suppression of an Escherichia coli TonB transmembrane domain mutation (delV17) by a missense mutation in ExbB. Mol Microbiol13:627–640[CrossRef]
    [Google Scholar]
  36. Moore C. H., Foster L.-A., Gerbig D. G. Jr, Dyer D. W., Gibson B. W.. 1995; Identification of alcaligin as the siderophore produced by Bordetella pertussis and Bordetella bronchiseptica.. J Bacteriol177:1116–1118
    [Google Scholar]
  37. Poole K., Zhao Q., Neshat S., Heinrichs D. E., Dean C. R.. 1996; The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. Microbiology142:1449–1458[CrossRef]
    [Google Scholar]
  38. Porra R. J., Langman L., Young L. G., Gibson F.. 1972; The role of ferric enterochelin esterase in enterochelin-mediated iron transport and ferrochelatase activity in Escherichia coli.. Arch Biochem Biophys153:74–78[CrossRef]
    [Google Scholar]
  39. Postle K.. 1993; TonB protein and energy transduction between membranes. J Bioenerg Biomembr25:591–601
    [Google Scholar]
  40. Skare J. T., Postle K.. 1991; Evidence for a TonB-dependent energy transduction complex in Escherichia coli.. Mol Microbiol5:2883–2890[CrossRef]
    [Google Scholar]
  41. Skare J. T., Ahmer M. M., Seachord C. L., Darveau R. P., Postle K.. 1993; Energy transduction between membranes: TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem268:16302–16308
    [Google Scholar]
  42. Stibitz S.. 1994; Use of conditionally counterselective suicide vectors for allelic exchange. Methods Enzymol235:458–465
    [Google Scholar]
  43. Stojiljkovic I., Srinivasan N.. 1997; , exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae. J Bacteriol179:805–812
    [Google Scholar]
  44. Traub I., Gaiser S., Braun V.. 1993; Activity domains of the TonB protein. Mol Microbiol8:409–423[CrossRef]
    [Google Scholar]
  45. Weiss A. A., Hewlett E. L.. 1986; Virulence factors of Bordetella pertussis.. Annu Rev Microbiol40:661–686[CrossRef]
    [Google Scholar]
  46. Wiggerich H., Klauke B., Köplin R., Priefer U. B., Pühler A.. 1997; Unusual structure of the tonB–exb DNA region of Xanthomonas campestris pv. campestris: tonB, exbB, and exbD1 are essential for ferric iron uptake, but exbD2 is not. J Bacteriol179:7103–7110
    [Google Scholar]
  47. Zhao Q., Li X., Mistry A., Srikumar R., Zhang L., Lomovskaya O., Poole K.. 1998; Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonas aeruginosa.. Antimicrob Agents Chemother42:2225–2231
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2453
Loading
/content/journal/micro/10.1099/00221287-145-9-2453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error