1887

Abstract

It is known that clinical isolates of exhibit a high level of resistance to copper salts, although the molecular basis of this resistance is not clear. To investigate this, a novel copper-binding protein was purified from a clinical isolate of . The protein was extracted from yeast cells after an induction period of 10 h in a copper-containing suspension medium. It was further purified by size-exclusion chromatography, ultrafiltration and reverse-phase HPLC. All protein fractions were analysed for their protein and copper contents. The copper/protein ratio increased steadily throughout the purification process; the most highly purified fraction showed a 210-fold increase compared to the whole-cell extract, with a recovery of 003%. The molecular mass of the protein was 10000 Da and a reconstitution study using the purified apoprotein suggested that the equivalent extent of Cu(I) binding was approximately 14 mol eq. The amino-terminal segment of the copper-binding protein revealed three Cys-Xaa-Cys motifs, which is typical of a metallothionein (MT), and showed significant homology with mammalian MTs with respect to the positions of the cysteine residues. This is the first report of the isolation of a copper-binding protein from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2423
1999-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452423a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2423&mimeType=html&fmt=ahah

References

  1. Aschner M. 1996; The functional significance of brain metallothioneins. FASEB J 10:1129–1136
    [Google Scholar]
  2. Berger B., Dallinger R., Gehrig P., Hunziker P. E. 1997; Primary structure of a copper-binding metallothionein from mantle tissue of the terrestrial gastropod Helix pomatia L. Biochem J 328:219–224
    [Google Scholar]
  3. Boulanger Y., Goodman C. M., Forte C. P., Fesik S. W., Armitage I. M. 1983; Model for mammalian metallothionein structure. Proc Natl Acad Sci USA 80:1501–1505 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Butt T. R., Ecker D. J. 1987; Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364
    [Google Scholar]
  6. Butt T. R., Sternberg E. J., Gorman J. A., Clark P., Hamer D., Rosenberg M., Crooke S. T. 1984; Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci USA 81:3332–3336 [CrossRef]
    [Google Scholar]
  7. Byrd J., Berger R. M., McMillin D. R., Wright C. F., Hamer D., Winge D. R. 1988; Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants. J Biol Chem 263:6688–6694
    [Google Scholar]
  8. Cervantes C., Gutierrez-Corona F. 1994; Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–138
    [Google Scholar]
  9. Culotta V. C., Howard W. R., Liu X. F. 1994; CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269:25295–25302
    [Google Scholar]
  10. Fischer E. H., Davie E. W. 1998; Recent excitement regarding metallothionein. Proc Natl Acad Sci USA 95:3333–3334 [CrossRef]
    [Google Scholar]
  11. Glanville N., Durnam D. M., Palmiter R. D. 1981; Structure of mouse metallothionein-1 gene and its mRNA. Nature 292:267–269 [CrossRef]
    [Google Scholar]
  12. Hamer D. H. 1986; Metallothionein. Annu Rev Biochem 55:913–951 [CrossRef]
    [Google Scholar]
  13. Jasani B., Schmid K. W. 1997; Significance of metallothionein overexpression in human tumours. Histopathology 31:211–214 [CrossRef]
    [Google Scholar]
  14. Jensen L. T., Howard W. R., Strain J. J., Winge D. R., Culotta V. C. 1996; Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514–18519 [CrossRef]
    [Google Scholar]
  15. Kagi J. H. R. 1991; Overview of metallothionein. Metallobiochemistry part B. Metallothionein and related molecules. Methods Enzymol 205:613–626
    [Google Scholar]
  16. Kagi J. H. R., Kojima A. Y. 1988 Metallothionein II Basel: Birkhauser;
    [Google Scholar]
  17. Karin M., Richards R. I. 1982; Human metallothionein genes – primary structure of the metallothionein-II gene and a related processed gene. Nature 299:797–802 [CrossRef]
    [Google Scholar]
  18. Kille P., Stephens P. E., Kay J. 1991; Elucidation of cDNA sequences for metallothioneins from rainbow trout, stone loach and pike liver using the polymerase chain reaction. Biochim Biophys Acta 1089:407–410 [CrossRef]
    [Google Scholar]
  19. Kojima Y., Berger C., Vallee B. L. J., Kagi H. R. 1976; Amino acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci USA 73:3413–3417 [CrossRef]
    [Google Scholar]
  20. Lastowski-Perry D, Otto E., Maroni G. 1985; Nucleotide sequence and expression of a Drosophila metallothionein. J Biol Chem 260:1527–1530
    [Google Scholar]
  21. Lerch K. 1980; Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature 284:368–370 [CrossRef]
    [Google Scholar]
  22. Lippert B. 1992; From cisplatin to artificial nucleases. The role of metal ion–nucleic acid interactions in biology. Biometals 5:195–208 [CrossRef]
    [Google Scholar]
  23. Liu X. D., Thiele D. J. 1997; Yeast metallothionein gene expression in response to metals and oxidative stress. Methods 11:289–299 [CrossRef]
    [Google Scholar]
  24. Madhani H. D., Fink G. R. 1998; The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8:348–353 [CrossRef]
    [Google Scholar]
  25. Malavasic M. J., Cihlar R. L. 1992; Growth response of several Candida albicans strains to inhibitory concentrations of heavy metals. J Med Vet Mycol 30:421–432 [CrossRef]
    [Google Scholar]
  26. Maret W., Valle B. L. 1998; Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482 [CrossRef]
    [Google Scholar]
  27. Mehra R. K., Winge D. R. 1988; Cu(I) binding to the Schizosaccharomyces pombe γ-glutamyl peptides varying in chain lengths. Arch Biochem Biophys 265:381–389 [CrossRef]
    [Google Scholar]
  28. Mehra R. K., Winge D. R. 1991; Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40 [CrossRef]
    [Google Scholar]
  29. Mehra R. K., Tarbet E. B., Gray W. R., Winge D. R. 1988; Metal specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–8819 [CrossRef]
    [Google Scholar]
  30. Mehra R. K., Garey J. R., Butt T. R., Gray W. R., Winge D. R. 1989; Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem 264:19747–19753
    [Google Scholar]
  31. Mehra R. K., Garey J. R., Winge D. R. 1990; Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J Biol Chem 265:6369–6375
    [Google Scholar]
  32. Naiki N., Yamagata S. 1976; Isolation and some properties of copper-binding proteins bound in a copper-resistant strain of yeast. Plant Cell Physiol 17:1281–1295
    [Google Scholar]
  33. Nielson K. B., Winge D. R. 1983; Order of metal binding in metallothionein. J Biol Chem 258:13063–13069
    [Google Scholar]
  34. Nielson K. B., Atkin C. L., Winge D. R. 1985; Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350
    [Google Scholar]
  35. Palmiter R. D. 1998; The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430 [CrossRef]
    [Google Scholar]
  36. Simpson J. A., Cheeseman K. H., Smith S. E., Dean R. T. 1988; Free-radical generation by copper ions and hydrogen peroxide. Biochem J 254:519–523
    [Google Scholar]
  37. White C., Sharman A. K., Gadd G. M. 1998; An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnol 16:572–575 [CrossRef]
    [Google Scholar]
  38. Winge D. R. 1998; Copper-regulatory domain involved in gene expression. Prog Nucleic Acid Res Mol Biol 58:165–195
    [Google Scholar]
  39. Winge D. R., Nielson K. B., Gray W. R., Hamer D. H. 1985; Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem 260:14464–14470
    [Google Scholar]
  40. Zhu Z., Thiele D. J. 1996; A specialized nucleosome modulates transcription factor access to a C. glabrata metal response promotor. Cell 87:459–470 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2423
Loading
/content/journal/micro/10.1099/00221287-145-9-2423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error