1887

Abstract

In , Hsp18, a protein belonging to the family of small heat-shock proteins, can be detected only at high temperature. Disruption of , located upstream and in the opposite orientation to , resulted in an elevated level of mRNA at low temperature. Genetic and biochemical experiments indicated that the product of , now called RheA (epressor of ighteen), directly represses . In , an transcriptional fusion was repressed in a strain expressing RheA. DNA-binding experiments with crude extracts of overproducing RheA indicated that RheA interacts specifically with the promoter. Transcription analysis of in the wild-type and in mutant strains suggested that RheA represses transcription not only of but also of itself.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2385
1999-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452385a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2385&mimeType=html&fmt=ahah

References

  1. Avedissian, M. & Gomes, S. L. ( 1996; ). Expression of the groESL operon is cell-cycle controlled in Caulobacter crescentus. Mol Microbiol 19, 79-89.[CrossRef]
    [Google Scholar]
  2. Babst, M., Hennecke, H. & Fischer, H. M. ( 1996; ). Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19, 827-839.[CrossRef]
    [Google Scholar]
  3. Barbosa, M. D. F. S., Yomano, L. P. & Ingram, L. O. ( 1994; ). Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Gene 148, 51-57.[CrossRef]
    [Google Scholar]
  4. Bucca, G., Ferina, G., Puglia, A.-M. & Smith, C. P. ( 1995; ). The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17, 663-674.[CrossRef]
    [Google Scholar]
  5. Bucca, G., Hindle, Z. & Smith, C. P. ( 1997; ). Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179, 5999-6004.
    [Google Scholar]
  6. Bukau, B. ( 1993; ). Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9, 671-680.[CrossRef]
    [Google Scholar]
  7. Chater, K. F. & Wilde, L. C. ( 1980; ). Streptomyces albus G mutants defective in the SalGI restriction–modification system. J Gen Microbiol 116, 323-334.
    [Google Scholar]
  8. Cole, S. T., Brosch, R., Parkhill, J. & 39 other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  9. Derré, I., Rapoport, G., Devine, K., Rose, M. & Msadek, T. ( 1999a; ). ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32, 581-593.[CrossRef]
    [Google Scholar]
  10. Derré, I., Rapoport, G. & Msadek, T. ( 1999b; ). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31, 117-131.[CrossRef]
    [Google Scholar]
  11. Georgopoulos, C. & Welch, W. J. ( 1993; ). Role of the major heat shock proteins as molecular chaperones. Annu Rev Mol Biol 9, 601-634.[CrossRef]
    [Google Scholar]
  12. Gibson, T. J. (1984). Studies on the Epstein–Barr virus genome. PhD thesis, Cambridge University.
  13. Grandvalet, C., Servant, P. & Mazodier, P. ( 1997; ). Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol 23, 77-84.[CrossRef]
    [Google Scholar]
  14. Grandvalet, C., Rapoport, G. & Mazodier, P. ( 1998; ). hrcA encoding the repressor of the groEL genes in Streptomyces albus G is associated with a second dnaJ gene. J Bacteriol 180, 5129-5134.
    [Google Scholar]
  15. Grandvalet, C., de Crécy-Lagard, V. & Mazodier, P. ( 1999; ). The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol 31, 521-532.[CrossRef]
    [Google Scholar]
  16. Hecker, M., Schumann, W. & Völker, U. ( 1996; ). Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19, 417-428.[CrossRef]
    [Google Scholar]
  17. Hirata, H., Fukazawa, T., Negoro, S. & Okada, H. ( 1986; ). Structure of a β-galactosidase gene of Bacillus stearothermophilus. J Bacteriol 166, 722-727.
    [Google Scholar]
  18. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation.
  19. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. ( 1993; ). Small heat shock proteins are molecular chaperones. J Biol Chem 268, 1517-1520.
    [Google Scholar]
  20. Mantis, N. J. & Winans, S. C. ( 1992; ). Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a σ32-like sigma factor. J Bacteriol 174, 991-997.
    [Google Scholar]
  21. Martinez, E., Bartolomé, B. & de la Cruz, F. ( 1988; ). pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68, 159-162.[CrossRef]
    [Google Scholar]
  22. Michel, G. P. F. ( 1993; ). Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis. J Bacteriol 175, 3228-3231.
    [Google Scholar]
  23. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F. X. & Schumann, W. ( 1997; ). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16, 4579-4590.[CrossRef]
    [Google Scholar]
  25. Msadek, T., Dartois, V., Kunst, F., Herbaud, M. L., Denizot, F. & Rapoport, G. ( 1998; ). ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27, 899-914.[CrossRef]
    [Google Scholar]
  26. Münchbach, M., Nocker, A. & Naberhaus, F. ( 1999; ). Multiple small heat shock proteins in rhizobia. J Bacteriol 181, 83-90.
    [Google Scholar]
  27. Naberhaus, F., Käser, R., Nocker, A. & Hennecke, H. ( 1998; ). A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28, 315-323.[CrossRef]
    [Google Scholar]
  28. Puglia, A.-M., Vohradsky, J. & Thompson, C. J. ( 1995; ). Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17, 737-746.[CrossRef]
    [Google Scholar]
  29. Reisenauer, A., Mohr, C. D. & Shapiro, L. ( 1996; ). Regulation of a heat shock σ32 homolog in Caulobacter crescentus. J Bacteriol 178, 1919-1927.
    [Google Scholar]
  30. Roberts, R. C., Toochinda, C., Avedissian, M., Baldini, R. L., Gomes, S. L. & Shapiro, L. ( 1996; ). Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178, 1829-1841.
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  33. Schulz, A. & Schumann, W. ( 1996; ). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178, 1088-1093.
    [Google Scholar]
  34. Segal, G. & Ron, E. Z. ( 1993; ). Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure. J Bacteriol 175, 3083-3088.
    [Google Scholar]
  35. Servant, P. & Mazodier, P. ( 1995; ). Characterization of Streptomyces albus 18-kilodalton heat shock responsive protein. J Bacteriol 177, 2998-3003.
    [Google Scholar]
  36. Servant, P. & Mazodier, P. ( 1996; ). Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J Bacteriol 178, 7031-7036.
    [Google Scholar]
  37. Servant, P., Thompson, C. & Mazodier, P. ( 1993; ). Use of new Escherichia coli/Streptomyces conjugative vectors to probe the functions of the two groEL-like genes of Streptomyces albus G by gene disruption. Gene 134, 25-32.[CrossRef]
    [Google Scholar]
  38. Servant, P., Thompson, C. & Mazodier, P. ( 1994; ). Post-transcriptional regulation of the groEL1 gene of Streptomyces albus. Mol Microbiol 12, 423-432.[CrossRef]
    [Google Scholar]
  39. Straus, D., Walter, W. & Gross, C. A. ( 1990; ). DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev 4, 2202-2209.[CrossRef]
    [Google Scholar]
  40. Strohl, W. R. ( 1992; ). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20, 961-974.[CrossRef]
    [Google Scholar]
  41. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113-130.[CrossRef]
    [Google Scholar]
  42. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
  43. Yuan, G. & Wong, S.-L. ( 1995; ). Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177, 6462-6468.
    [Google Scholar]
  44. Yura, T., Nagai, H. & Mori, H. ( 1993; ). Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47, 321-350.[CrossRef]
    [Google Scholar]
  45. Zuber, U. & Schumann, W. ( 1994; ). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176, 1359-1363.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2385
Loading
/content/journal/micro/10.1099/00221287-145-9-2385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error