1887

Abstract

A region of the A3(2) chromosome was identified and cloned by using as a probe the lipase gene from M11. The cloned region consisted of 6286 bp, and carried a complete lipase gene, , as well as a gene encoding a transcriptional activator (). The A3(2) gene encodes a functional extracellular lipase 82% identical to the M11 lipase; the partially purified enzyme showed a preference for substrates of short to medium chain length. Transcription of was completely dependent on the presence of , and occurred from a single promoter similar to the promoters of M11 and G. These three promoters have well-conserved −10 and −35 regions, as well as additional conserved sequences upstream of the −35 region, which could function as targets for transcriptional activation by the cognate LipR regulators. The LipR activators are related to other bacterial regulators of a similar size, constituting a previously unidentified family of proteins that includes MalT, AcoK, AlkS, AfsR, five mycobacterial proteins of unknown function and some regulators in antibiotic synthesis clusters. A lipase-deficient strain of was constructed and found to be slightly affected in production of the polyketide antibiotic actinorhodin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2365
1999-09-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452365a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2365&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z, Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Banchio C., Gramajo H. C.. 1997; Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): first characterization of a Gram-positive bacterial system. Microbiology143:2439–2447[CrossRef]
    [Google Scholar]
  3. Chater K. F.. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol47:685–713[CrossRef]
    [Google Scholar]
  4. Chater K. F.. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology144:1465–1478[CrossRef]
    [Google Scholar]
  5. Cruz H., Pérez C., Wellington E, Castro C., Servı́n-González L.. 1994; Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. Gene144:141–142[CrossRef]
    [Google Scholar]
  6. Feller G., Thiry M., Gerday C.. 1990; Sequence of a lipase gene from the antarctic psychrophile Moraxella TA144. Nucleic Acids Res18:6431[CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1988; Phylogenies from molecular sequences: inference and reliability.. Annu Rev Genet22:521–565[CrossRef]
    [Google Scholar]
  8. Floriano B., Bibb M.. 1996; afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol21:385–396[CrossRef]
    [Google Scholar]
  9. Fuqua W. C., Winans S. C., Greenberg E. P.. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  10. Gralla J. D., Collado-Vides J.. 1996; Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp1232–1245Edited by Neidhardt F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hattori K., Adachi H., Matsuzawa A., Yamamoto K., Tsujimoto M., Aoki J., Hattori M., Arai H., Inoue K.. 1996; cDNA cloning and expression of intracellular platelet-activating factor (PAF) acetylhydrolase II. Its homology with plasma PAF acetylhydrolase. J Biol Chem271:33032–33038[CrossRef]
    [Google Scholar]
  12. Hopwood D. A., Bibb M. J., Chater K. F..7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  13. Horinouchi S., Kito M., Nishiyama M., Furuya K., Hong S. K., Miyake K., Beppu T.. 1990; Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene95:49–56[CrossRef]
    [Google Scholar]
  14. Inoue H., Nojima H., Okayama H.. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene96:23–28[CrossRef]
    [Google Scholar]
  15. Katz L., Thompson C. J., Hopwood D. A.. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol129:2703–2714
    [Google Scholar]
  16. Kunkel T. A.. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA82:488–492[CrossRef]
    [Google Scholar]
  17. Molnar I., Aparicio J. F., Haydock S. F., Khaw L. E., Schwecke T., Konig A., Staunton J., Leadlay P. F.. 1996; Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene169:1–7[CrossRef]
    [Google Scholar]
  18. Murray M. G.. 1986; Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem158:165–170[CrossRef]
    [Google Scholar]
  19. Oh S. H., Chater K. F.. 1997; Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol179:122–127
    [Google Scholar]
  20. Olukoshi E. R., Packter N. M.. 1994; Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology140:931–943[CrossRef]
    [Google Scholar]
  21. Pao G. M., Saier M. H. Jr. 1995; Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol40:136–154[CrossRef]
    [Google Scholar]
  22. Peng H. L., Yang Y. H., Deng W. L., Chang H. Y.. 1997; Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon. J Bacteriol179:1497–1504
    [Google Scholar]
  23. Pérez C., Juárez K., Garcı́a-Castells E., Soberón G., Servı́n-González L.. 1993; Cloning, characterization and expression in Streptomyces lividans 66 of an extracellular lipase-encoding gene from Streptomyces sp. M11. Gene123:109–114[CrossRef]
    [Google Scholar]
  24. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  25. Ruan X., Stassi D., Lax S. A., Katz L.. 1997; A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain. Gene203:1–9[CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schleif R.. 1996; Two positively regulated systems, ara and mal. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp1300–1309Edited by Neidhardt F. C..others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Servı́n-González L., Sampieri A., Cabello J., Galván L., Juárez V., Castro C.. 1995; Sequence and functional analysis of the Streptomyces phaeochromogenes plasmid pJV1 reveals a modular organization of Streptomyces plasmids that replicate by rolling circle. Microbiology141:2499–2510[CrossRef]
    [Google Scholar]
  29. Servı́n-González L., Castro C., Pérez C, Rubio M., Valdez F.. 1997; bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator. J Bacteriol179:7816–7826
    [Google Scholar]
  30. Sommer P., Bormann C., Gotz F.. 1997; Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol63:3553–3560
    [Google Scholar]
  31. Strauch E., Takano E., Baylis H. A., Bibb M. J.. 1991; The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol5:289–298[CrossRef]
    [Google Scholar]
  32. Strohl W. R.. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974[CrossRef]
    [Google Scholar]
  33. Sztajer H., Maliszewska I., Wieczorek J.. 1988; Production of exogenous lipases by bacteria, fungi and actinomycetes. Enzyme Microb Technol10:492–497[CrossRef]
    [Google Scholar]
  34. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J.. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol6:2797–2804[CrossRef]
    [Google Scholar]
  35. Takano E., White J., Thompson C. J., Bibb M. J.. 1995; Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene166:133–137[CrossRef]
    [Google Scholar]
  36. Wei Y., Swenson L., Castro C..7 other authors 1998; Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1·9 Å resolution. Structure6:511–519[CrossRef]
    [Google Scholar]
  37. Wietzorrek A., Bibb M.. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol25:1181–1184[CrossRef]
    [Google Scholar]
  38. Xue Y., Zhao L., Liu H. W., Sherman D. H.. 1998; A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci USA95:12111–12116[CrossRef]
    [Google Scholar]
  39. Yanisch-Perron C, Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  40. Yuste L., Canosa I., Rojo F.. 1998; Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol180:5218–5226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2365
Loading
/content/journal/micro/10.1099/00221287-145-9-2365
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error