1887

Abstract

The locus in A3(2) was identified because mutations in it uncoupled sporulation from antibiotic synthesis: mutants failed to produce any of the four antibiotics characteristic of . These mutants are now shown to contain point mutations in the gene which encodes the histidine kinase sensor-transmitter protein of a two-component signalling system. The non-antibiotic-producing mutants, which are unpigmented, spontaneously acquire pigmented colony sectors. Genetic analysis established that the pigmented sectors contain second-site suppressive mutations, (for uppressor of ). Phenotypic characterization showed that strains produce all four antibiotics; some overproduce antibiotics and are designated Pha, for recocious yperproduction of ntibiotics. A set of mutations responsible for suppression was localized by plasmid-mediated and protoplast fusion mapping techniques to the vicinity of the locus. DNA cloned from this region was used to construct phage that could transduce mutations. Sequence analysis of strains defined mutations in both the gene and the gene; the latter encodes the two-component system’s response regulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2343
1999-09-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452343a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2343&mimeType=html&fmt=ahah

References

  1. Aceti D., Champness W.. 1998; Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol180:3100–3106
    [Google Scholar]
  2. Adamidis T., Riggle P., Champness W.. 1990; Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol172:2962–2969
    [Google Scholar]
  3. Baikalov I., Schroder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E.. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry35:11053–11061[CrossRef]
    [Google Scholar]
  4. Bibb M.. 1996; The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology142:1335–1344[CrossRef]
    [Google Scholar]
  5. Brian P., Riggle P. J., Santos R. A., Champness W. C.. 1996; Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol178:3221–3231
    [Google Scholar]
  6. Bystrykh L. V., Fernández-Moreno M. A., Herrema J. K., Malpartida F., Hopwood D. A., Dijkhuizen L. 1996; Production of actinorhodin-related blue pigments by Streptomyces coelicolor A3(2). J Bacteriol178:2238–2244
    [Google Scholar]
  7. Chakraburtty R., Bibb M.. 1997; The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol179:5854–5861
    [Google Scholar]
  8. Champness W. C.. 1988; New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol170:1168–1174
    [Google Scholar]
  9. Champness W.. 1999a; Cloning and analysis of regulatory genes involved in Streptomyces secondary metabolite biosynthesis. In Manual of Industrial Microbiology and Biotechnology pp725–739Edited by Demain A., Davies J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Champness W.. 1999b; Actinomycete phylogeny and development: questions and challenges. In Prokaryotic DevelopmentEdited by Shimkits L., Brun Y.. Washington, DC: American Society for Microbiology; in press
    [Google Scholar]
  11. Champness W., Chater K.. 1994; Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In Regulation of Bacterial Differentiation pp61–94Edited by Piggot P., Moran C., Youngman P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Chater K. F., Bibb M. J.. 1997; Regulation of bacterial antibiotic production. In Biotechnology, Vol. 6, Products of Secondary Metabolism pp57–105Edited by Kleinkauf H., von Döhren H.. Weinheim: VCH;
    [Google Scholar]
  13. Chater K. F., Bruton C. J.. 1985; Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J4:1893–1897
    [Google Scholar]
  14. Chong P. P., Podmore S. M., Kieser H. M., Redenbach M., Turgay K., Marahiel M., Hopwood D. A., Smith C. P.. 1998; Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2). Microbiology144:193–199[CrossRef]
    [Google Scholar]
  15. Dyson P., Schrempf H.. 1987; Genetic instability and DNA amplification in Streptomyces lividans 66. J Bacteriol169:4796–4803
    [Google Scholar]
  16. Fernández-Moreno M. A., Cabellero J. L., Hopwood D. A., Malpartida F. 1991; The act gene cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces coelicolor. Cell66:769–780[CrossRef]
    [Google Scholar]
  17. Gramajo H. E., Takano E., Bibb M. J.. 1993; Stationary phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol7:837–845[CrossRef]
    [Google Scholar]
  18. Guthrie E., Flaxman C., White J., Hodgson D. A., Bibb M. J., Chater K. F.. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology144:727–738[CrossRef]
    [Google Scholar]
  19. Hodgson D., Chater K.. 1981; A chromosomal locus controlling extracellular agarase produced by Streptomyces coelicolor A3(2) and its inactivation by chromosomal integration of plasmid SCP1. J Gen Microbiol124:339–348
    [Google Scholar]
  20. Hopwood D., Chater K. F.. 1974; Streptomyces coelicolor. In Handbook of Genetics pp237–255Edited by King R. C.. New York: Plenum;
    [Google Scholar]
  21. Hopwood D., Harold R., Vivian A., Ferguson H.. 1969; A new kind of fertility variant in Streptomyces coelicolor. Genetics62:461–477
    [Google Scholar]
  22. Hopwood D., Wright H., Bibb M., Cohen S.. 1977; Genetic recombination through protoplast fusion in Streptomyces. Nature268:171–174[CrossRef]
    [Google Scholar]
  23. Hopwood D. A., Bibb M. J., Chater K. F..7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  24. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J.. 1998; Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J Bacteriol180:4538–4546
    [Google Scholar]
  25. Kirby R., Hopwood D.. 1977; Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol98:239–252[CrossRef]
    [Google Scholar]
  26. Malpartida F., Hopwood D. A.. 1986; Physical and genetic characterization of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet203:66–73
    [Google Scholar]
  27. Narva K. E., Feitelson J. S.. 1990; Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol172:326–333
    [Google Scholar]
  28. Parkinson J.. 1995; Genetic approaches for signaling pathways and proteins. In Two-component Signal Transduction pp9–24Edited by Hoch J. A., Silhavy T. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Piret J. M., Chater K. F.. 1985; Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation. J Bacteriol163:965–972
    [Google Scholar]
  30. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  31. Rodicio M. R., Bruton C. J., Chater K. F.. 1985; New derivatives of the Streptomyces phage ϕC31 useful for the cloning and functional analysis of Streptomyces DNA. Gene34:283–292[CrossRef]
    [Google Scholar]
  32. Rudd B. A. M., Hopwood D. A.. 1979; Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol114:35–43[CrossRef]
    [Google Scholar]
  33. Rudd B. A. M., Hopwood D. A.. 1980; A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. J Gen Microbiol119:333–340
    [Google Scholar]
  34. Sermonti G., Petris A., Micheli M. R., Lanfaloni L.. 1977; A factor involved in chloramphenicol resistance in Streptomyces coelicolor A3(2): its transfer in the absence of the fertility factor. J Gen Microbiol100:347–353[CrossRef]
    [Google Scholar]
  35. Stock J., Surette M., Levit M., Park P.. 1995; Two-component signal transduction systems: structure–function relationships and mechanisms of catalysis. In Two-component Signal Transduction pp25–52Edited by Hock J., Silhavy T.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Strohl W. R.. 1958; Biotechnology of Antibiotics, 2nd edn. New York: Marcel Dekker;
    [Google Scholar]
  37. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J.. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol6:2797–2804[CrossRef]
    [Google Scholar]
  38. Wietzorrek A., Bibb M.. 1997; A novel family of proteins that regulates antibiotic production in Streptomyces appears to contain an OmpR-like DNA-binding fold. Mol Microbiol25:1183–1184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2343
Loading
/content/journal/micro/10.1099/00221287-145-9-2343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error