1887

Abstract

In a transposition mutant of TK24, the usually glucose-repressible expression of a heterologous α-amylase gene () became resistant to glucose repression. The transposon had inserted into an ORF called which encodes a 274 aa product sharing significant sequence similarities with various phosphatases that act on small phosphorylated substrates. was transcribed as a monocistronic mRNA and its transcription was enhanced at the transition phase. Because its transcriptional and putative translational start points coincide, is likely to be translated in the absence of a conventional RBS. The -disrupted mutant is characterized by early growth arrest in glucose-grown cultures and by partial relief of glucose repression of expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2303
1999-09-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452303a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2303&mimeType=html&fmt=ahah

References

  1. Ahlert J., Distler J., Mansouri K., Piepersberg W.. 1997; Identification of stsC, the gene encoding the l-glutamine:scyllo-inosose aminotransferase from streptomycin-producing streptomycetes. Arch Microbiol168:102–113[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W.. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene30:157–166[CrossRef]
    [Google Scholar]
  4. Blondelet-Rouault M. H., Weiser J., Lebrihi A, Branny P., Pernodet J. L.. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene190:315–317[CrossRef]
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W.. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene2:95–113[CrossRef]
    [Google Scholar]
  6. Boos W., Shuman H.. 1998; Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev62:204–229
    [Google Scholar]
  7. Decker K., Peist R., Reidl J., Kossmann M., Brand B., Boos W.. 1993; Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J Bacteriol175:5655–5665
    [Google Scholar]
  8. Delic I., Robbins P., Westpheling J.. 1992; Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA89:1885–1889[CrossRef]
    [Google Scholar]
  9. Deutscher J., Kuster E., Bergstedt U., Charrier V., Hillen W.. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol15:1049–1053[CrossRef]
    [Google Scholar]
  10. Hindle Z., Smith C. P.. 1994; Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol12:737–745[CrossRef]
    [Google Scholar]
  11. Hopwood D. A., Bibb M. J., Chater K. F..7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  12. Ikeda H., Seno E. T., Bruton C. J., Chater K. F.. 1984; Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor. Mol Gen Genet196:501–507[CrossRef]
    [Google Scholar]
  13. Janssen G. R., Bibb M. J.. 1985; Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene124:133–134
    [Google Scholar]
  14. Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A.. 1996; A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol264:968–980[CrossRef]
    [Google Scholar]
  15. Klein B., Foreman J. A., Searcy R. L.. 1969; The synthesis and utilization of Cibachron Blue-amylose: a new chromogenic substrate for determination of amylase activity. Anal Biochem31:412–425[CrossRef]
    [Google Scholar]
  16. Leblond P., Francou F. X., Simonet J. M., Decaris B.. 1990; Pulsed-field gel electrophoresis analysis of the genome of Streptomyces ambofaciens strains. FEMS Microbiol Lett60:79–88
    [Google Scholar]
  17. Leblond P., Redenbach M., Cullum J.. 1993; Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J Bacteriol175:3422–3429
    [Google Scholar]
  18. Martin-Verstraete I., Charrier V., Stulke J., Galinier A., Erni B, Rapoport G., Deutscher J.. 1998; Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol28:293–303[CrossRef]
    [Google Scholar]
  19. Matsuhisa A., Suzuki N., Noda T., Shiba K.. 1995; Inositol monophosphatase activity from the Escherichia coli suhB gene product. J Bacteriol177:200–205
    [Google Scholar]
  20. Matthews K. S., Nichols J. C.. 1998; Lactose repressor protein: functional properties and structure. Prog Nucleic Acid Res Mol Biol58:127–164
    [Google Scholar]
  21. Murray M. G.. 1986; Use of sodium trichloracetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem158:165–170[CrossRef]
    [Google Scholar]
  22. Muth G., Nussbaumer B., Wohlleben W., Pühler A.. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet219:341–348[CrossRef]
    [Google Scholar]
  23. Neuwald A. F., York J. D., Majerus P. W.. 1991; Diverse proteins homologous to inositol monophosphatase. FEBS Lett294:16–18[CrossRef]
    [Google Scholar]
  24. Nguyen J.. 1999; The regulatory protein Reg1 of Streptomyces lividans binds the promoter region of several genes repressed by glucose. FEMS Microbiol Lett175:51–58[CrossRef]
    [Google Scholar]
  25. Nguyen J., Francou F., Virolle M. J., Guerineau M.. 1997; Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol179:6383–6390
    [Google Scholar]
  26. Ni X., Westpheling J.. 1997; Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA94:13116–13121[CrossRef]
    [Google Scholar]
  27. Parish T., Liu J., Nikaido H., Stoker N. G.. 1997; A Mycobacterium smegmatis mutant with a defective inositol monophosphatase phosphatase gene homolog has altered cell envelope permeability. J Bacteriol179:7827–7833
    [Google Scholar]
  28. Pridham T. G., Anderson P., Foley C., Lindenfelser L. A., Hesseltine C. W., Benedict R. C.. 1957; A selection media for maintenance and taxonomic study of Streptomyces. Antibiot Annu947:953
    [Google Scholar]
  29. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  30. Saier M. H. Jr, Chauvaux S., Deutscher, J, Reizer J., Ye J. J.. 1995; Protein phosphorylation and regulation of carbon metabolism in Gram-negative versus Gram-positive bacteria. Trends Biochem Sci20:267–271[CrossRef]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  33. Solenberg P. J., Baltz R. H.. 1991; Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J Bacteriol173:1096–1104
    [Google Scholar]
  34. Solenberg P. J., Burgett S. G., Murray M. G.. 1989; Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J Bacteriol171:4807–4813
    [Google Scholar]
  35. Strauch E., Takano E., Baylis H. A., Bibb M. J.. 1991; The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol5:289–298[CrossRef]
    [Google Scholar]
  36. Strohl W. R.. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974[CrossRef]
    [Google Scholar]
  37. Stulke J., Arnaud M., Rapoport G., Martin-Verstraete I.. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol28:865–874[CrossRef]
    [Google Scholar]
  38. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J.. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol6:2797–2804[CrossRef]
    [Google Scholar]
  39. Tercero J. A., Espinosa J. C., Lacalle R. A., Jimenez A.. 1996; The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem271:1579–1590[CrossRef]
    [Google Scholar]
  40. Virolle M.-J., Bibb M. J.. 1988; Cloning, characterization and regulation of an alpha-amylase gene from Streptomyces limosus. Mol Microbiol2:197–208[CrossRef]
    [Google Scholar]
  41. Virolle M.-J., Gagnat J.. 1994; Sequences involved in growth-phase-dependent expression and glucose repression of a Streptomyces α-amylase gene. Microbiology140:1059–1067[CrossRef]
    [Google Scholar]
  42. Virolle M.-J., Morris V. J., Bibb M. J.. 1990; A simple and reliable turbidimetric and kinetic assay for alpha-amylase that is readily applied to culture supernatants and cell extracts. J Ind Microbiol5:295–302[CrossRef]
    [Google Scholar]
  43. Volff J. N., Eichenseer C., Viell P., Piendl W., Altenbuchner J.. 1996; Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans. Mol Microbiol21:1037–1047[CrossRef]
    [Google Scholar]
  44. van Wezel G. P., White J., Young P., Postma P. W., Bibb M. J.. 1997; Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI-galR family of regulatory genes. Mol Microbiol23:537–549[CrossRef]
    [Google Scholar]
  45. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813
    [Google Scholar]
  46. Yano R., Nagai H., Shiba K., Yura T.. 1990; A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J Bacteriol172:2124–2130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2303
Loading
/content/journal/micro/10.1099/00221287-145-9-2303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error