1887

Abstract

In a transposition mutant of TK24, the usually glucose-repressible expression of a heterologous α-amylase gene () became resistant to glucose repression. The transposon had inserted into an ORF called which encodes a 274 aa product sharing significant sequence similarities with various phosphatases that act on small phosphorylated substrates. was transcribed as a monocistronic mRNA and its transcription was enhanced at the transition phase. Because its transcriptional and putative translational start points coincide, is likely to be translated in the absence of a conventional RBS. The -disrupted mutant is characterized by early growth arrest in glucose-grown cultures and by partial relief of glucose repression of expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2303
1999-09-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452303a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2303&mimeType=html&fmt=ahah

References

  1. Ahlert J., Distler J., Mansouri K., Piepersberg W. 1997; Identification of stsC, the gene encoding the l-glutamine:scyllo-inosose aminotransferase from streptomycin-producing streptomycetes. Arch Microbiol 168:102–113 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  4. Blondelet-Rouault M. H., Weiser J., Lebrihi A, Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317 [CrossRef]
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113 [CrossRef]
    [Google Scholar]
  6. Boos W., Shuman H. 1998; Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229
    [Google Scholar]
  7. Decker K., Peist R., Reidl J., Kossmann M., Brand B., Boos W. 1993; Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J Bacteriol 175:5655–5665
    [Google Scholar]
  8. Delic I., Robbins P., Westpheling J. 1992; Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA 89:1885–1889 [CrossRef]
    [Google Scholar]
  9. Deutscher J., Kuster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef]
    [Google Scholar]
  10. Hindle Z., Smith C. P. 1994; Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12:737–745 [CrossRef]
    [Google Scholar]
  11. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  12. Ikeda H., Seno E. T., Bruton C. J., Chater K. F. 1984; Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor. Mol Gen Genet 196:501–507 [CrossRef]
    [Google Scholar]
  13. Janssen G. R., Bibb M. J. 1985; Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134
    [Google Scholar]
  14. Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. 1996; A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol 264:968–980 [CrossRef]
    [Google Scholar]
  15. Klein B., Foreman J. A., Searcy R. L. 1969; The synthesis and utilization of Cibachron Blue-amylose: a new chromogenic substrate for determination of amylase activity. Anal Biochem 31:412–425 [CrossRef]
    [Google Scholar]
  16. Leblond P., Francou F. X., Simonet J. M., Decaris B. 1990; Pulsed-field gel electrophoresis analysis of the genome of Streptomyces ambofaciens strains. FEMS Microbiol Lett 60:79–88
    [Google Scholar]
  17. Leblond P., Redenbach M., Cullum J. 1993; Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J Bacteriol 175:3422–3429
    [Google Scholar]
  18. Martin-Verstraete I., Charrier V., Stulke J., Galinier A., Erni B, Rapoport G., Deutscher J. 1998; Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28:293–303 [CrossRef]
    [Google Scholar]
  19. Matsuhisa A., Suzuki N., Noda T., Shiba K. 1995; Inositol monophosphatase activity from the Escherichia coli suhB gene product. J Bacteriol 177:200–205
    [Google Scholar]
  20. Matthews K. S., Nichols J. C. 1998; Lactose repressor protein: functional properties and structure. Prog Nucleic Acid Res Mol Biol 58:127–164
    [Google Scholar]
  21. Murray M. G. 1986; Use of sodium trichloracetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem 158:165–170 [CrossRef]
    [Google Scholar]
  22. Muth G., Nussbaumer B., Wohlleben W., Pühler A. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348 [CrossRef]
    [Google Scholar]
  23. Neuwald A. F., York J. D., Majerus P. W. 1991; Diverse proteins homologous to inositol monophosphatase. FEBS Lett 294:16–18 [CrossRef]
    [Google Scholar]
  24. Nguyen J. 1999; The regulatory protein Reg1 of Streptomyces lividans binds the promoter region of several genes repressed by glucose. FEMS Microbiol Lett 175:51–58 [CrossRef]
    [Google Scholar]
  25. Nguyen J., Francou F., Virolle M. J., Guerineau M. 1997; Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol 179:6383–6390
    [Google Scholar]
  26. Ni X., Westpheling J. 1997; Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA 94:13116–13121 [CrossRef]
    [Google Scholar]
  27. Parish T., Liu J., Nikaido H., Stoker N. G. 1997; A Mycobacterium smegmatis mutant with a defective inositol monophosphatase phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 179:7827–7833
    [Google Scholar]
  28. Pridham T. G., Anderson P., Foley C., Lindenfelser L. A., Hesseltine C. W., Benedict R. C. 1957; A selection media for maintenance and taxonomic study of Streptomyces. Antibiot Annu 947:953
    [Google Scholar]
  29. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  30. Saier M. H. Jr, Chauvaux S., Deutscher, J, Reizer J., Ye J. J. 1995; Protein phosphorylation and regulation of carbon metabolism in Gram-negative versus Gram-positive bacteria. Trends Biochem Sci 20:267–271 [CrossRef]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  33. Solenberg P. J., Baltz R. H. 1991; Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J Bacteriol 173:1096–1104
    [Google Scholar]
  34. Solenberg P. J., Burgett S. G., Murray M. G. 1989; Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J Bacteriol 171:4807–4813
    [Google Scholar]
  35. Strauch E., Takano E., Baylis H. A., Bibb M. J. 1991; The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5:289–298 [CrossRef]
    [Google Scholar]
  36. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  37. Stulke J., Arnaud M., Rapoport G., Martin-Verstraete I. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [CrossRef]
    [Google Scholar]
  38. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804 [CrossRef]
    [Google Scholar]
  39. Tercero J. A., Espinosa J. C., Lacalle R. A., Jimenez A. 1996; The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 271:1579–1590 [CrossRef]
    [Google Scholar]
  40. Virolle M.-J., Bibb M. J. 1988; Cloning, characterization and regulation of an alpha-amylase gene from Streptomyces limosus. Mol Microbiol 2:197–208 [CrossRef]
    [Google Scholar]
  41. Virolle M.-J., Gagnat J. 1994; Sequences involved in growth-phase-dependent expression and glucose repression of a Streptomyces α-amylase gene. Microbiology 140:1059–1067 [CrossRef]
    [Google Scholar]
  42. Virolle M.-J., Morris V. J., Bibb M. J. 1990; A simple and reliable turbidimetric and kinetic assay for alpha-amylase that is readily applied to culture supernatants and cell extracts. J Ind Microbiol 5:295–302 [CrossRef]
    [Google Scholar]
  43. Volff J. N., Eichenseer C., Viell P., Piendl W., Altenbuchner J. 1996; Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans. Mol Microbiol 21:1037–1047 [CrossRef]
    [Google Scholar]
  44. van Wezel G. P., White J., Young P., Postma P. W., Bibb M. J. 1997; Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI-galR family of regulatory genes. Mol Microbiol 23:537–549 [CrossRef]
    [Google Scholar]
  45. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  46. Yano R., Nagai H., Shiba K., Yura T. 1990; A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J Bacteriol 172:2124–2130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2303
Loading
/content/journal/micro/10.1099/00221287-145-9-2303
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error