1887

Abstract

The genes from A3(2) and , encoding the guanine-nucleotide exchange factor EF-Ts, were cloned and sequenced. Streptomycetes have multiple and highly divergent EF-Tu species, with EF-Tu1 and EF-Tu3 showing only about 65% amino acid sequence identity, and yet these can apparently interact with a single EF-Ts species. lies in an operon with , which encodes ribosomal protein S2. The amino acid sequence of S2 from differs from most other bacterial S2 homologues in having a C-terminal extension of 70 aa residues with a highly repetitive organization, the function of which is unknown. Transcription analysis of the operon of by promoter probing, nuclease S1 mapping and Northern blotting revealed that the genes give rise to a bicistronic transcript from a single promoter upstream of . An attenuator was identified in the intergenic region; it results in an approximately 2:1 ratio of vs transcripts. Although , encoding the major EF-Tu, is located in the ribosomal protein operon, an additional promoter in the intergenic region leads to a significant excess of EF-Tu over ribosomes. Most amino acid residues known from the crystal structure of the EF-TuEF-Ts complex to be directly involved in interaction between the two elongation factors are conserved between and . However, whenever interaction residues in the EF-Tu moiety show divergence among EF-Tu1, EF-Tu2 and EF-Tu3, the single EF-Ts exhibits compensatory substitutions of the corresponding residues. These apparently enable productive interaction to occur with all three EF-Tus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2293
1999-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452293a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2293&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. An G., Bendiak D. S., Mamelak L. A., Friesen J. D.. 1981; Organization and nucleotide sequence of a new ribosomal operon in Escherichia coli containing the genes for ribosomal protein S2 and elongation factor Ts. Nucleic Acids Res9:4163–4172[CrossRef]
    [Google Scholar]
  3. Bendiak D. S., Friesen J. D.. 1981; Organization of genes in the four minute region of the Escherichia coli chromosome: evidence that rpsB and tsf are cotranscribed. Mol Gen Genet181:356–362[CrossRef]
    [Google Scholar]
  4. Bourne H. R., Sanders D. A., McCormick F.. 1991; The GTPase superfamily: conserved structure and molecular mechanism. Nature349:117–127[CrossRef]
    [Google Scholar]
  5. Brown K. L., Wood S., Buttner M. J.. 1992; Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol Microbiol6:1133–1139[CrossRef]
    [Google Scholar]
  6. Chater K. F., Bruton C. J., Plaskitt K. A., Buttner M. J., Méndez C., Helmann J. D.. 1989; The developmental fate of S. coelicolor hyphae depends on a gene product homologous with the motility σ factor of B. subtilis. Cell59:133–143[CrossRef]
    [Google Scholar]
  7. van Delft J. H. M., Verbeek H. M., de Jong P. J., Bosch L.. 1987; Transcription of the tRNA–tufB operon of Escherichia coli: activation, termination and antitermination. Nucleic Acids Res15:9515–9530[CrossRef]
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  9. Feinberg A. P., Vogelstein B.. 1983; A technique for radiolabelling of DNA restriction endonuclease fragments to high specific activity. Anal Biochem132:6–13[CrossRef]
    [Google Scholar]
  10. Floriano B., Bibb M. J.. 1996; AfsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol21:385–396[CrossRef]
    [Google Scholar]
  11. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255[CrossRef]
    [Google Scholar]
  12. Hobbs G., Frazer C. M., Gardner D. C. J., Flett F., Oliver S. G.. 1989; Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol31:272–277
    [Google Scholar]
  13. Hopwood D. A., Bibb M. J., Chater K. F..7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  14. Hopwood D. A., Chater K. F., Bibb M. J.. 1995; Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology28:65–102
    [Google Scholar]
  15. Jinks-Robertson S., Nomura M.. 1987; Ribosomes and tRNA. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biologyvol. 2 pp1358–1385Edited by Neidhardt F. C.. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Kawashima T., Berthet-Colominas C., Wulff M., Cusack S., Leberman R.. 1996; The structure of the Escherichia coli EF-Tu·EF-Ts complex at 2·5 Å resolution.. Nature379:511–518[CrossRef]
    [Google Scholar]
  17. Kraal B., Bosch L., Mesters J. R., de Graaf J. M., Woudt L. P., Vijgenboom E., Heinstra P. W. H., Zeef, L. A. H., Boon C.. 1993; Elongation factors in protein synthesis. In The GTPase Superfamily pp28–52Edited by Marsh J., Goode J.. Chichester: Wiley;
    [Google Scholar]
  18. Krab I. M., Parmeggiani A.. 1998; EF-Tu, a GTPase odyssey. Biochim Biophys Acta1443:1–22[CrossRef]
    [Google Scholar]
  19. Le Dantec L., Bové J. M., Saillard C.. 1998a; Gene organization and transcriptional analysis of the Spiroplasma citri rpsB/tsf/x operon. Curr Microbiol37:269–273[CrossRef]
    [Google Scholar]
  20. Le Dantec L., Castroviejo M., Bové J. M., Saillard C.. 1998b; Purification, cloning, and preliminary characterization of a Spiroplasma citri ribosomal protein with DNA binding capacity. J Biol Chem273:24379–24386[CrossRef]
    [Google Scholar]
  21. Lee J. S., An G., Friesen J. D., Fiil N. P.. 1981; Location of the tufB promoter of Escherichia coli: cotranscription of tufB with four transfer RNA genes. Cell25:251–258[CrossRef]
    [Google Scholar]
  22. Lindahl L., Zengel J. M.. 1986; Ribosomal protein genes in Escherichia coli. Annu Rev Genet20:297–326[CrossRef]
    [Google Scholar]
  23. van der Meide P., Vijgenboom E, Dicke M., Bosch L.. 1982; Regulation of the expression of tufA and tufB, the two genes encoding the elongation factor EF-Tu in Escherichia coli. FEBS Lett139:325–330[CrossRef]
    [Google Scholar]
  24. Messing J., Crea R., Seeburg P. H.. 1981; A system for shotgun DNA sequencing. Nucleic Acids Res9:309–321[CrossRef]
    [Google Scholar]
  25. Miyajima A., Shibuya M., Kuchino Y., Kaziro Y.. 1981; Transcription of the E. coli tufB gene: cotranscription with four tRNA genes and inhibition by guanosine-5′-diphosphate-3′-diphosphate. Mol Gen Genet183:13–19[CrossRef]
    [Google Scholar]
  26. Murray M. G.. 1986; Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem158:165–170[CrossRef]
    [Google Scholar]
  27. Narva K. E., Feitelson J. S.. 1990; Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol172:326–333
    [Google Scholar]
  28. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sayle R. A., Milner-White E. J.. 1995; rasmol: biomolecular graphics for all. Trends Biochem Sci20:374[CrossRef]
    [Google Scholar]
  31. Strauch E., Takano E., Baylis H. A., Bibb M. J.. 1991; The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol5:289–298[CrossRef]
    [Google Scholar]
  32. Strohl W. R.. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974[CrossRef]
    [Google Scholar]
  33. Summerton J., Atkins T., Bestwick R.. 1983; A rapid method for preparation of bacterial plasmids. Anal Biochem133:79–84[CrossRef]
    [Google Scholar]
  34. Tieleman L. N., van Wezel G. P., Bibb M. J., Kraal B. 1997; Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters. J Bacteriol179:3619–3624
    [Google Scholar]
  35. Vijgenboom E., Woudt L. P., Heinstra P. W. H., Rietveld K., van Haarlem, J., van Wezel G. P., Shochat S., Bosch L.. 1994; Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. Microbiology140:983–998[CrossRef]
    [Google Scholar]
  36. van Wezel G. P.. 1994; Transcriptional regulation of translational genes in Streptomyces coelicolor A3(2). PhD thesis Leiden University; The Netherlands:
  37. van Wezel G. P., Vijgenboom E., Bosch L.. 1991; A comparative study of the rRNA operons of Streptomyces coelicolor A3(2) and sequence analysis of rrnA. Nucleic Acids Res19:4399–4403[CrossRef]
    [Google Scholar]
  38. van Wezel G. P., Woudt L. P., Vervenne R., Verdurmen M. L. A, Vijgenboom E., Bosch L.. 1994; Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2). Biochim Biophys Acta1219:543–547[CrossRef]
    [Google Scholar]
  39. van Wezel G. P., Takano E., Vijgenboom E., Bosch L.. 1995; The tuf3 gene of Streptomyces coelicolor A3(2) encodes an inessential elongation factor Tu that is apparently subject to positive stringent control. Microbiology141:2519–2528[CrossRef]
    [Google Scholar]
  40. Yanisch-Perron C, Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  41. Zhang Y., Yu N.-Y., Spremulli L. L.. 1998; Mutational analysis of the roles of residues in Escherichia coli elongation factor Ts in the interaction with elongation factor Tu. J Biol Chem273:4556–4562[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2293
Loading
/content/journal/micro/10.1099/00221287-145-9-2293
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error