1887
Preview this article:
Zoom in
Zoomout

Forty years of genetics with : from through to , Page 1 of 1

| /docserver/preview/fulltext/micro/145/9/1452183a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2183
1999-09-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452183a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2183&mimeType=html&fmt=ahah

References

  1. Alikhanian S. I., Mindlin S. Z.. 1957; Recombination in Streptomyces rimosus. Nature180:1208–1209[CrossRef]
    [Google Scholar]
  2. Altenbuchner J., Cullum J.. 1984; DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol Gen Genet195:134–138[CrossRef]
    [Google Scholar]
  3. Angell S., Lewis C. G., Buttner M. J., Bibb M. J.. 1994; Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet244:135–143
    [Google Scholar]
  4. August P. R., Tang L., Yoon Y. J..9 other authors 1998; Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol5:69–79[CrossRef]
    [Google Scholar]
  5. Baltz R. H.. 1978; Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol107:93–102[CrossRef]
    [Google Scholar]
  6. Bibb M. J.. 1996; The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology142:1335–1344[CrossRef]
    [Google Scholar]
  7. Bibb M. J., Cohen S. N.. 1982; Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet187:265–277[CrossRef]
    [Google Scholar]
  8. Bibb M. J., Freeman R. F., Hopwood D. A.. 1977; Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Mol Gen Genet154:155–166[CrossRef]
    [Google Scholar]
  9. Bibb M. J., Ward J. M., Hopwood D. A.. 1978; Transformation of plasmid DNA into Streptomyces at high frequency. Nature274:398–400[CrossRef]
    [Google Scholar]
  10. Bibb M. J., Schottel J. L., Cohen S. N.. 1980; A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature284:526–531[CrossRef]
    [Google Scholar]
  11. Bibb M. J., Ward J. M., Kieser T., Cohen S. N., Hopwood D. A.. 1981; Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet184:230–240
    [Google Scholar]
  12. Bibb M. J., Findlay P. R., Johnson M. W.. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene30:157–166[CrossRef]
    [Google Scholar]
  13. Bibb M. J., Janssen G. R., Ward J. M.. 1985; Cloning and analysis of the promoter region of the erythromycin resistance gene ermE of Streptomyces erythraeus. Gene41:E357–E368
    [Google Scholar]
  14. Bibb M. J., Biro S., Motamedi H., Collins J. F., Hutchinson C. R.. 1989; Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J8:2727–2736
    [Google Scholar]
  15. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E.. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49[CrossRef]
    [Google Scholar]
  16. Bolotin A. P., Sorokin A. V., Aleksandrov N. N., Danilenko V. N., Kozlov I. I.. 1985; Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB24.2. Antibiot Med Biotekhnol30:804–811
    [Google Scholar]
  17. Bradley S. G., Lederberg J.. 1956; Heterokaryosis in Streptomyces. J Bacteriol72:219–225
    [Google Scholar]
  18. Braendle D. H., Szybalski W.. 1957; Genetic interaction among streptomycetes: heterokaryosis and synkaryosis. Proc Natl Acad Sci USA43:947–955[CrossRef]
    [Google Scholar]
  19. Bruton C. J., Plaskitt K. A., Chater K. F.. 1995; Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol Microbiol18:89–99[CrossRef]
    [Google Scholar]
  20. Buttner M. J.. 1989; RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol3:1653–1659[CrossRef]
    [Google Scholar]
  21. Buttner M. J., Fearnley I. M., Bibb M. J.. 1987; The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet209:101–109[CrossRef]
    [Google Scholar]
  22. Buttner M. J., Smith A. M., Bibb M. J.. 1988; At least three RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell52:599–607[CrossRef]
    [Google Scholar]
  23. Bystrykh L. V., Fernández-Moreno M. A., Herrema J. K., Malpartida F., Hopwood D. A., Dijkhuizen L. 1996; Production of actinorhodin-related ‘blue pigments’ by Streptomyces coelicolor A3(2). J Bacteriol178:2238–2244
    [Google Scholar]
  24. Cairns J.. 1963; The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol6:208–213[CrossRef]
    [Google Scholar]
  25. Calcutt M. J., Schmidt F. J.. 1992; Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacteriol174:3220–3226
    [Google Scholar]
  26. Chang P.-C., Cohen S. N.. 1994; Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science265:952–954[CrossRef]
    [Google Scholar]
  27. Chater K. F.. 1972; A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol72:9–28[CrossRef]
    [Google Scholar]
  28. Chater K. F.. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology144:1465–1478[CrossRef]
    [Google Scholar]
  29. Chater K. F., Bruton C. J.. 1983; Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene26:67–78[CrossRef]
    [Google Scholar]
  30. Chater K. F., Bruton C. J.. 1985; Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J4:1893–1897
    [Google Scholar]
  31. Chater K. F., Bruton C. J., Plaskitt K. A., Buttner M. J., Méndez C., Helmann J.. 1989; The developmental fate of S. coelicolor hyphae depends crucially on a gene product homologous with the motility sigma factor of B. subtilis. Cell59:133–143[CrossRef]
    [Google Scholar]
  32. Chen C. W.. 1997; Threads of evidence – on the trail to linear bacterial chromosomes. SAJ News11:1–29
    [Google Scholar]
  33. Chung S. T.. 1982; Isolation and characterization of Streptomyces fradiae plasmids which are prophage of the actinophage ϕSF1. Gene17:239–246[CrossRef]
    [Google Scholar]
  34. Chung S. T.. 1987; Tn4556, a 6·8 kb transposable element of Streptomyces fradiae. J Bacteriol169:4436–4441
    [Google Scholar]
  35. Cohn F.. 1875; Untersuchungen über Bacterien II. Beitr Biol1:141–207
    [Google Scholar]
  36. Cortes J., Haydock S. H., Roberts G. A., Bevitt D. J., Leadlay P. F.. 1990; An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora eryhraea. Nature348:176–178[CrossRef]
    [Google Scholar]
  37. Dickenson P. B., MacDonald K. D.. 1955; An electron microscope examination of the initial cell stage in Streptomyces spp. J Gen Microbiol13:84–90[CrossRef]
    [Google Scholar]
  38. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L.. 1991; Modular organization of genes required for complex polyketide biosynthesis. Science252:675–679[CrossRef]
    [Google Scholar]
  39. Dowding J. E.. 1973; Characterization of a bacteriophage virulent for Streptomyces coelicolor A3(2). J Gen Microbiol76:163–176[CrossRef]
    [Google Scholar]
  40. Erikson D.. 1947a; Differentiation of the vegetative and sporogenous phases of the actinomycetes. 1. The lipid nature of the outer wall of the aerial mycelium. J Gen Microbiol1:39–44[CrossRef]
    [Google Scholar]
  41. Erikson D.. 1947b; Differentiation of the vegetative and sporogenous phases of the actinomycetes. 2. Factors affecting the development of the aerial mycelium. J Gen Microbiol1:45–52[CrossRef]
    [Google Scholar]
  42. Erikson D.. 1948; Differentiation of the vegetative and sporogenous phases of the actinomycetes. 3. Variation in the Actinomyces coelicolor species-group. J Gen Microbiol2:252–259[CrossRef]
    [Google Scholar]
  43. Erikson D.. 1955; Loss of aerial mycelium and other changes in streptomycete development due to physical variations of cultural conditions. J Gen Microbiol13:136–148[CrossRef]
    [Google Scholar]
  44. Feitelson J. S., Hopwood D. A.. 1983; Cloning a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol Gen Genet190:394–398[CrossRef]
    [Google Scholar]
  45. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell66:769–780[CrossRef]
    [Google Scholar]
  46. Fornwald J. A., Schmidt F. J., Adams C. W., Rosenberg M., Brawner M. E.. 1987; Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc Natl Acad Sci USA84:2130–2134[CrossRef]
    [Google Scholar]
  47. Gil J. A., Hopwood D. A.. 1983; Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. Gene25:119–132[CrossRef]
    [Google Scholar]
  48. Glauert A. M., Hopwood D. A.. 1961; The fine structure of Streptomyces violaceoruber (S. coelicolor). III. The walls of the mycelium and spores. J Biophys Biochem Cytol10:505–516[CrossRef]
    [Google Scholar]
  49. Hansen G. H. A.. 1874; Undersogelser angaaende spedalskhedens aarsager. Norsk Magazin f Loegevidensk4:1–88
    [Google Scholar]
  50. Hara O., Beppu T.. 1982; Mutants blocked in streptomycin production in Streptomyces griseus – the role of A-factor. J Antibiot35:349–358[CrossRef]
    [Google Scholar]
  51. Harz C. O.. 1877; Actinomyces bovis, ein neuer Schimmel in den Geweben des Rindes. Jahresbericht der Königlichen Centralen Thierarzeneischule München für 1877/18785:125–140
    [Google Scholar]
  52. Hayakawa T., Tanaka T., Sakaguchi K., Otake N., Yonehara H.. 1979; A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. J Gen Appl Microbiol25:255–260[CrossRef]
    [Google Scholar]
  53. Hindle Z., Smith C. P.. 1994; Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol12:737–745[CrossRef]
    [Google Scholar]
  54. Hodgson D. A.. 1982; Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol128:2417–2430
    [Google Scholar]
  55. Hopwood D. A.. 1957; Genetic recombination in Streptomyces coelicolor. J Gen Microbiol16:ii–iii
    [Google Scholar]
  56. Hopwood D. A.. 1958; Genetic recombination in Streptomyces coelicolor. PhD thesis University of Cambridge;
  57. Hopwood D. A.. 1959; Linkage and the mechanism of recombination in Streptomyces coelicolor. Ann NY Acad Sci81:887–898
    [Google Scholar]
  58. Hopwood D. A.. 1960; Phase-contrast observations on Streptomyces coelicolor. J Gen Microbiol22:295–302[CrossRef]
    [Google Scholar]
  59. Hopwood D. A.. 1965a; New data on the linkage map of Streptomyces coelicolor. Genet Res Cambridge6:248–262[CrossRef]
    [Google Scholar]
  60. Hopwood D. A.. 1965b; A circular linkage map in the actinomycete Streptomyces coelicolor. J Mol Biol12:514–516[CrossRef]
    [Google Scholar]
  61. Hopwood D. A.. 1966a; Nonrandom location of temperature-sensitive mutants on the linkage map of Streptomyces coelicolor. Genetics54:1169–1176
    [Google Scholar]
  62. Hopwood D. A.. 1966b; Lack of constant genome ends in Streptomyces coelicolor. Genetics54:1177–1184
    [Google Scholar]
  63. Hopwood D. A.. 1967a; A possible circular symmetry of the linkage map of Streptomyces coelicolor. J Cell Physiol70:Suppl 17–10
    [Google Scholar]
  64. Hopwood D. A.. 1967b; Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev31:373–403
    [Google Scholar]
  65. Hopwood D. A.. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev97:2465–2497[CrossRef]
    [Google Scholar]
  66. Hopwood D. A., Glauert A. M.. 1961; Electron microscope observations on the surface structures of Streptomyces violaceoruber. J Gen Microbiol26:325–330[CrossRef]
    [Google Scholar]
  67. Hopwood D. A., Kieser T.. 1993; Conjugative plasmids in Streptomyces. In Bacterial Conjugation pp293–311Edited by Clewell D. B.. New York: Plenum;
    [Google Scholar]
  68. Hopwood D. A., Wright H. M.. 1973a; Transfer of a plasmid between Streptomyces species. J Gen Microbiol77:187–195[CrossRef]
    [Google Scholar]
  69. Hopwood D. A., Wright H. M.. 1973b; Genetic studies on SCP1-prime strains of Streptomyces coelicolor A3(2). J Gen Microbiol95:107–120
    [Google Scholar]
  70. Hopwood D. A., Sermonti G., Spada-Sermonti I.. 1963; Heterozygous clones in Streptomyces coelicolor. J Gen Microbiol30:249–260[CrossRef]
    [Google Scholar]
  71. Hopwood D. A., Harold R. J., Vivian A., Ferguson H. M.. 1969; A new kind of fertility variant in Streptomyces coelicolor. Genetics62:461–477
    [Google Scholar]
  72. Hopwood D. A., Wildermuth H., Palmer H. M.. 1970; Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol61:397–408[CrossRef]
    [Google Scholar]
  73. Hopwood D. A., Wright H. M., Bibb M. J., Cohen S. N.. 1977; Genetic recombination through protoplast fusion in Streptomyces. Nature268:171–174[CrossRef]
    [Google Scholar]
  74. Hopwood D. A., Bibb M. J., Ward J. M., Westpheling J.. 1979; Plasmids in Streptomyces coelicolor and related species. In Plasmids of Medical, Environmental and Commercial Importance pp245–258Edited by Timmis K. N., Puhler A.. Amsterdam: Elsevier;
    [Google Scholar]
  75. Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A. M., Floss H. G., Õmura S.. 1985a; Production of ‘hybrid’ antibiotics by genetic engineering. Nature314:642–644[CrossRef]
    [Google Scholar]
  76. Hopwood D. A., Bibb M. J., Chater K. F..7 other authors 1985b; Genetic Manipulation of Streptomyces: A Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  77. Janssen G. R., Ward J. M., Bibb M. J.. 1989; Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes Dev3:415–429[CrossRef]
    [Google Scholar]
  78. Kendall K. J., Cohen S. N.. 1988; Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol170:4634–4651
    [Google Scholar]
  79. Khokhlov A. S., Tovarova I. I., Borisova L. N., Pliner S. A., Schevchenko L. A., Kornitskaya E. Y., Ivkina N. S., Rapoport I. A.. 1967; A-factor responsible for the biosynthesis of streptomycin by a mutant strain of Actinomyces streptomycini. Dokl Akad Nauk SSSR177:232–235
    [Google Scholar]
  80. Khosla C., Zawada R. J.. 1996; Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotechnol14:335–341[CrossRef]
    [Google Scholar]
  81. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J.. 1982; pIJI01, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet185:223–238[CrossRef]
    [Google Scholar]
  82. Kieser H. M., Kieser T., Hopwood D. A.. 1992; A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol174:5496–5507
    [Google Scholar]
  83. Kinashi H., Shimaji M.. 1987; Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot40:913–916[CrossRef]
    [Google Scholar]
  84. Kirby R., Hopwood D. A.. 1977; Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol98:239–252[CrossRef]
    [Google Scholar]
  85. Kirby R., Wright L. F., Hopwood D. A.. 1975; Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature254:265–267[CrossRef]
    [Google Scholar]
  86. Kleiner E. M., Pliner S. A., Soifer V. S., Onoprienko V. V., Balashova T. A., Rosynov B. V., Khokhlov A. S.. 1976; The structure of A-factor bioregulator from Streptomyces griseus. Bioorg Chem2:1142–1147
    [Google Scholar]
  87. Klieneberger-Nobel E.. 1947; The life cycle of sporing Actinomyces as revealed by a study of their structure and septation. J Gen Microbiol1:22–32[CrossRef]
    [Google Scholar]
  88. Kutzner H. J., Waksman S. A.. 1959; Streptomyces coelicolor Müller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. J Bacteriol78:528–538
    [Google Scholar]
  89. Lawlor E. J., Baylis H. A., Chater K. F.. 1987; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev1:1305–1310[CrossRef]
    [Google Scholar]
  90. Lederberg J.. 1952; Cell genetics and hereditary symbiosis. Physiol Res32:403–430
    [Google Scholar]
  91. Lederberg J., Tatum E. L.. 1946; Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol11:113–114[CrossRef]
    [Google Scholar]
  92. Lederberg J., Lederberg E. M., Zinder N. D., Lively R. R.. 1951; Recombination analysis of bacterial heredity. Cold Spring Harbor Symp Quant Biol16:413–443[CrossRef]
    [Google Scholar]
  93. Leskiw B. K., Bibb M. J., Chater K. F.. 1991; The use of a rare codon specifically during development?. Mol Microbiol5:2861–2867[CrossRef]
    [Google Scholar]
  94. Lin Y.-S., Chen C. W.. 1997; Instability of artificially circularised chromosomes of Streptomyces lividans. Mol Microbiol26:709–719[CrossRef]
    [Google Scholar]
  95. Lin Y.-S., Kieser H. M., Hopwood D. A., Chen C. W.. 1993; The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol10:923–933[CrossRef]
    [Google Scholar]
  96. Lomovskaya N. D., Mkrtumian N. M., Gostimskaya N. L.. 1970; Isolation and characteristics of Streptomyces coelicolor actinophage. Genetika6:135–137
    [Google Scholar]
  97. Lonetto M. A., Brown K. L., Rudd K. E., Buttner M. J.. 1994; Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA91:7573–7577[CrossRef]
    [Google Scholar]
  98. Losick R., Pero J.. 1981; Cascades of sigma factors. Cell25:582–584[CrossRef]
    [Google Scholar]
  99. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C.. 1993; Engineered biosynthesis of novel polyketides. Science262:1546–1550[CrossRef]
    [Google Scholar]
  100. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C.. 1995; Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature375:549–554[CrossRef]
    [Google Scholar]
  101. McDaniel R., Thamchaipenet A., Gustafsson C., Fu H., Betlach M., Betlach M., Ashley G.. 1999; Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA96:1846–1851[CrossRef]
    [Google Scholar]
  102. McGregor J. F.. 1954; Nuclear division and the life cycle in a Streptomyces sp. J Gen Microbiol11:52–56[CrossRef]
    [Google Scholar]
  103. Malpartida F., Hopwood D. A.. 1984; Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature309:462–464[CrossRef]
    [Google Scholar]
  104. Malpartida F., Hopwood D. A.. 1986; Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet205:66–73[CrossRef]
    [Google Scholar]
  105. Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T.. 1994; Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene146:47–56[CrossRef]
    [Google Scholar]
  106. Mattern S. G., Brawner M. E., Westpheling J.. 1993; Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon. J Bacteriol175:1213–1220
    [Google Scholar]
  107. Mazodier P., Petter R., Thompson C.. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol171:3583–3585
    [Google Scholar]
  108. Merrick M. J.. 1976; A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol96:299–315[CrossRef]
    [Google Scholar]
  109. Okanishi M., Suzuki K., Umezawa H.. 1974; Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol80:389–400[CrossRef]
    [Google Scholar]
  110. Onaka H., Nakagawa T., Horinouchi S.. 1998; Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol28:743–753
    [Google Scholar]
  111. Ono H., Hintermann G., Crameri R., Wallis G., Hütter R. 1982; Reiterated DNA sequences in a mutant strain of Streptomyces glaucescens and cloning of the sequence in Escherichia coli. Mol Gen Genet186:106–110[CrossRef]
    [Google Scholar]
  112. Piret J. M., Chater K. F.. 1985; Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation. J Bacteriol163:965–972
    [Google Scholar]
  113. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  114. Robinson M., Lewis E., Napier E.. 1981; Occurrence of reiterated DNA sequences in strains of Streptomyces produced by an interspecific protoplast fusion. Mol Gen Genet182:336–340[CrossRef]
    [Google Scholar]
  115. Rudd B. A. M., Hopwood D. A.. 1979; Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol114:35–43[CrossRef]
    [Google Scholar]
  116. Saito H.. 1957; Genetic recombination in Streptomyces griseoflavus. Microb Gen Bull15:25–26
    [Google Scholar]
  117. Schrempf H.. 1982; Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. J Bacteriol151:701–707
    [Google Scholar]
  118. Schrempf H., Bujard H., Hopwood D. A., Goebel W.. 1975; Isolation of covalently closed circular deoxyribonucleic acid from Streptomyces coelicolor A3(2). J Bacteriol121:416–421
    [Google Scholar]
  119. Schwecke T., Aparicio J. F., Molnar I..10 other authors 1995; The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA92:7839–7843[CrossRef]
    [Google Scholar]
  120. Sermonti G., Casciano S.. 1963; Sexual polarity in Streptomyces coelicolor. J Gen Microbiol33:293–301[CrossRef]
    [Google Scholar]
  121. Sermonti G., Spada-Sermonti I.. 1955; Genetic recombination in Streptomyces. Nature176:121
    [Google Scholar]
  122. Sermonti G., Mancinelli A., Spada-Sermonti I.. 1960; Heterogeneous clones (‘heteroclones’) in Streptomyces coelicolor A3(2). Genetics45:669–672
    [Google Scholar]
  123. Sezonov G., Hagège J., Pernodet J.-L., Friedmann A., Guerineau M.. 1995; Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol17:533–544[CrossRef]
    [Google Scholar]
  124. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Hopwood D. A.. 1989; Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J8:2717–2725
    [Google Scholar]
  125. Shiffman D., Cohen S. N.. 1993; Role of the imp operon of the Streptomyces coelicolor genetic element SLP1: two imp-encoded proteins interact to autoregulate imp expression and control plasmid maintenance. J Bacteriol175:6767–6774
    [Google Scholar]
  126. Skurray R. A., Reeves P.. 1973; Characterization of lethal zygosis associated with conjugation in Escherichia coli K-12. J Bacteriol113:58–70
    [Google Scholar]
  127. Smith B., Dyson P.. 1995; Inducible transposition in Streptomyces lividans of insertion sequence IS6100 from Mycobacterium fortuitum. Mol Microbiol18:933–941[CrossRef]
    [Google Scholar]
  128. Smith C. P., Chater K. F.. 1988; Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3(2) and identification of a closely associated transcription unit. Mol Gen Genet211:129–137[CrossRef]
    [Google Scholar]
  129. Smith M. C. M., Burns R. N., Wilson S. E., Gregory M. A.. 1999; The complete genome sequence of the Streptomyces temperate phage ϕC31: evolutionary relationships to other viruses. Nucleic Acids Res27:2145–2155[CrossRef]
    [Google Scholar]
  130. Solenberg P. J., Burgett S. G.. 1989; Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J Bacteriol171:4807–4813
    [Google Scholar]
  131. Stahl F. W.. 1967; Circular genetic maps. J Cell Physiol70:Suppl 11–12
    [Google Scholar]
  132. Stanier R. Y.. 1942; Agar-decomposing strains of the Actinomyces coelicolor species-group. J Bacteriol44:555–570
    [Google Scholar]
  133. Stuttard C.. 1979; Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces. J Gen Microbiol110:479–482[CrossRef]
    [Google Scholar]
  134. Suarez J. E., Chater K. F.. 1980; Polyethylene glycol-assisted transfection of Streptomyces protoplasts. J Bacteriol142:8–14
    [Google Scholar]
  135. Szybalski W.. 1959; Preface. In Genetics of Streptomyces and other antibiotic-producing microorganisms. Ann NY Acad Sci81:807
    [Google Scholar]
  136. Tanaka K., Shiina T., Takahashi H.. 1988; Multiple principal sigma factor homologs in eubacteria: identification of the ‘rpoD box’. Science242:1040–1042[CrossRef]
    [Google Scholar]
  137. Thompson C. J., Gray G. S.. 1983; Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci USA80:5190–5194[CrossRef]
    [Google Scholar]
  138. Thompson C. J., Ward J. M., Hopwood D. A.. 1980; DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature286:525–527[CrossRef]
    [Google Scholar]
  139. Umezawa H.. 1977; Microbial secondary metabolites with potential use in cancer treatment (plasmid involvement in biosynthesis and compounds). Biomedicine26:236–249
    [Google Scholar]
  140. Vivian A.. 1971; Genetic control of fertility in Streptomyces coelicolor A3(2): plasmid involvement in the interconversion of uf and if strains. J Gen Microbiol69:353–364[CrossRef]
    [Google Scholar]
  141. Vivian A., Hopwood D. A.. 1970; Genetic control of fertility in Streptomyces coelicolor A3(2): the if fertility type. J Gen Microbiol64:101–117[CrossRef]
    [Google Scholar]
  142. Vivian A., Hopwood D. A.. 1973; Genetic control of fertility in Streptomyces coelicolor A3(2): new kinds of donor strains. J Gen Microbiol76:147–162[CrossRef]
    [Google Scholar]
  143. Volff J. N., Altenbuchner J.. 1997; High frequency transposition of the Tn5 derivative Tn5493 in Streptomyces lividans. Gene194:81–86[CrossRef]
    [Google Scholar]
  144. Volff J. N., Altenbuchner J.. 1998; Genetic instability of the Streptomyces chromosome. Mol Microbiol27:239–246[CrossRef]
    [Google Scholar]
  145. Waksman S. A.. 1950; The Actinomycetes Waltham, MA: Chronica Botanica;
    [Google Scholar]
  146. Westpheling J., Ranes M., Losick R.. 1985; RNA polymerase heterogeneity in Streptomyces coelicolor. Nature313:22–27[CrossRef]
    [Google Scholar]
  147. Wietzorrek A., Bibb M.. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol25:1177–1184
    [Google Scholar]
  148. Willey J., Schwedock J., Losick R.. 1993; Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev7:895–903[CrossRef]
    [Google Scholar]
  149. Wright L. F., Hopwood D. A.. 1976a; Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol95:96–106[CrossRef]
    [Google Scholar]
  150. Wright L. F., Hopwood D. A. 1976b; Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolor A3(2). J Gen Microbiol96:289–297[CrossRef]
    [Google Scholar]
  151. Yamada Y., Sugamura K., Kondo K., Yanagimoto M.. 1987; The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J Antibiot40:496–504[CrossRef]
    [Google Scholar]
  152. Zakrzewska-Czerwinska J., Schrempf H. 1992; Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol174:2688–2693
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2183
Loading
/content/journal/micro/10.1099/00221287-145-9-2183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error