1887
Preview this article:
Zoom in
Zoomout

Forty years of genetics with : from through to , Page 1 of 1

| /docserver/preview/fulltext/micro/145/9/1452183a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2183
1999-09-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452183a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2183&mimeType=html&fmt=ahah

References

  1. Alikhanian, S. I. & Mindlin, S. Z. ( 1957; ). Recombination in Streptomyces rimosus. Nature 180, 1208-1209.[CrossRef]
    [Google Scholar]
  2. Altenbuchner, J. & Cullum, J. ( 1984; ). DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol Gen Genet 195, 134-138.[CrossRef]
    [Google Scholar]
  3. Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, M. J. ( 1994; ). Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244, 135-143.
    [Google Scholar]
  4. August, P. R., Tang, L., Yoon, Y. J. & 9 other authors ( 1998; ). Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5, 69–79.[CrossRef]
    [Google Scholar]
  5. Baltz, R. H. ( 1978; ). Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol 107, 93-102.[CrossRef]
    [Google Scholar]
  6. Bibb, M. J. ( 1996; ). The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335-1344.[CrossRef]
    [Google Scholar]
  7. Bibb, M. J. & Cohen, S. N. ( 1982; ). Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet 187, 265-277.[CrossRef]
    [Google Scholar]
  8. Bibb, M. J., Freeman, R. F. & Hopwood, D. A. ( 1977; ). Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Mol Gen Genet 154, 155-166.[CrossRef]
    [Google Scholar]
  9. Bibb, M. J., Ward, J. M. & Hopwood, D. A. ( 1978; ). Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274, 398-400.[CrossRef]
    [Google Scholar]
  10. Bibb, M. J., Schottel, J. L. & Cohen, S. N. ( 1980; ). A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature 284, 526-531.[CrossRef]
    [Google Scholar]
  11. Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N. & Hopwood, D. A. ( 1981; ). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184, 230-240.
    [Google Scholar]
  12. Bibb, M. J., Findlay, P. R. & Johnson, M. W. ( 1984; ). The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30, 157-166.[CrossRef]
    [Google Scholar]
  13. Bibb, M. J., Janssen, G. R. & Ward, J. M. ( 1985; ). Cloning and analysis of the promoter region of the erythromycin resistance gene ermE of Streptomyces erythraeus. Gene 41, E357-E368.
    [Google Scholar]
  14. Bibb, M. J., Biro, S., Motamedi, H., Collins, J. F. & Hutchinson, C. R. ( 1989; ). Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8, 2727-2736.
    [Google Scholar]
  15. Bierman, M., Logan, R., O’Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49.[CrossRef]
    [Google Scholar]
  16. Bolotin, A. P., Sorokin, A. V., Aleksandrov, N. N., Danilenko, V. N. & Kozlov, I. I. ( 1985; ). Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB24.2. Antibiot Med Biotekhnol 30, 804-811.
    [Google Scholar]
  17. Bradley, S. G. & Lederberg, J. ( 1956; ). Heterokaryosis in Streptomyces. J Bacteriol 72, 219-225.
    [Google Scholar]
  18. Braendle, D. H. & Szybalski, W. ( 1957; ). Genetic interaction among streptomycetes: heterokaryosis and synkaryosis. Proc Natl Acad Sci USA 43, 947-955.[CrossRef]
    [Google Scholar]
  19. Bruton, C. J., Plaskitt, K. A. & Chater, K. F. ( 1995; ). Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol Microbiol 18, 89-99.[CrossRef]
    [Google Scholar]
  20. Buttner, M. J. ( 1989; ). RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol 3, 1653-1659.[CrossRef]
    [Google Scholar]
  21. Buttner, M. J., Fearnley, I. M. & Bibb, M. J. ( 1987; ). The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet 209, 101-109.[CrossRef]
    [Google Scholar]
  22. Buttner, M. J., Smith, A. M. & Bibb, . J. ( 1988; ). At least three RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell 52, 599-607.[CrossRef]
    [Google Scholar]
  23. Bystrykh, L. V., Fernández-Moreno, M. A., Herrema, J. K., Malpartida, F., Hopwood, D. A. & Dijkhuizen, L. ( 1996; ). Production of actinorhodin-related ‘blue pigments’ by Streptomyces coelicolor A3(2). J Bacteriol 178, 2238-2244.
    [Google Scholar]
  24. Cairns, J. ( 1963; ). The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6, 208-213.[CrossRef]
    [Google Scholar]
  25. Calcutt, M. J. & Schmidt, F. J. ( 1992; ). Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacteriol 174, 3220-3226.
    [Google Scholar]
  26. Chang, P.-C. & Cohen, S. N. ( 1994; ). Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265, 952-954.[CrossRef]
    [Google Scholar]
  27. Chater, K. F. ( 1972; ). A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72, 9-28.[CrossRef]
    [Google Scholar]
  28. Chater, K. F. ( 1998; ). Taking a genetic scalpel to the Streptomyces colony. Microbiology 144, 1465-1478.[CrossRef]
    [Google Scholar]
  29. Chater, K. F. & Bruton, C. J. ( 1983; ). Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene 26, 67-78.[CrossRef]
    [Google Scholar]
  30. Chater, K. F. & Bruton, C. J. ( 1985; ). Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 4, 1893-1897.
    [Google Scholar]
  31. Chater, K. F., Bruton, C. J., Plaskitt, K. A., Buttner, M. J., Méndez, C. & Helmann, J. ( 1989; ). The developmental fate of S. coelicolor hyphae depends crucially on a gene product homologous with the motility sigma factor of B. subtilis. Cell 59, 133-143.[CrossRef]
    [Google Scholar]
  32. Chen, C. W. ( 1997; ). Threads of evidence – on the trail to linear bacterial chromosomes. SAJ News 11, 1-29.
    [Google Scholar]
  33. Chung, S. T. ( 1982; ). Isolation and characterization of Streptomyces fradiae plasmids which are prophage of the actinophage ϕSF1. Gene 17, 239-246.[CrossRef]
    [Google Scholar]
  34. Chung, S. T. ( 1987; ). Tn4556, a 6·8 kb transposable element of Streptomyces fradiae. J Bacteriol 169, 4436-4441.
    [Google Scholar]
  35. Cohn, F. ( 1875; ). Untersuchungen über Bacterien II. Beitr Biol 1, 141-207.
    [Google Scholar]
  36. Cortes, J., Haydock, S. H., Roberts, G. A., Bevitt, D. J. & Leadlay, P. F. ( 1990; ). An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora eryhraea. Nature 348, 176-178.[CrossRef]
    [Google Scholar]
  37. Dickenson, P. B. & MacDonald, K. D. ( 1955; ). An electron microscope examination of the initial cell stage in Streptomyces spp. J Gen Microbiol 13, 84-90.[CrossRef]
    [Google Scholar]
  38. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. & Katz, L. ( 1991; ). Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675-679.[CrossRef]
    [Google Scholar]
  39. Dowding, J. E. ( 1973; ). Characterization of a bacteriophage virulent for Streptomyces coelicolor A3(2). J Gen Microbiol 76, 163-176.[CrossRef]
    [Google Scholar]
  40. Erikson, D. ( 1947a; ). Differentiation of the vegetative and sporogenous phases of the actinomycetes. 1. The lipid nature of the outer wall of the aerial mycelium. J Gen Microbiol 1, 39-44.[CrossRef]
    [Google Scholar]
  41. Erikson, D. ( 1947b; ). Differentiation of the vegetative and sporogenous phases of the actinomycetes. 2. Factors affecting the development of the aerial mycelium. J Gen Microbiol 1, 45-52.[CrossRef]
    [Google Scholar]
  42. Erikson, D. ( 1948; ). Differentiation of the vegetative and sporogenous phases of the actinomycetes. 3. Variation in the Actinomyces coelicolor species-group. J Gen Microbiol 2, 252-259.[CrossRef]
    [Google Scholar]
  43. Erikson, D. ( 1955; ). Loss of aerial mycelium and other changes in streptomycete development due to physical variations of cultural conditions. J Gen Microbiol 13, 136-148.[CrossRef]
    [Google Scholar]
  44. Feitelson, J. S. & Hopwood, D. A. ( 1983; ). Cloning a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol Gen Genet 190, 394-398.[CrossRef]
    [Google Scholar]
  45. Fernández-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. ( 1991; ). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 769-780.[CrossRef]
    [Google Scholar]
  46. Fornwald, J. A., Schmidt, F. J., Adams, C. W., Rosenberg, M. & Brawner, M. E. ( 1987; ). Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc Natl Acad Sci USA 84, 2130-2134.[CrossRef]
    [Google Scholar]
  47. Gil, J. A. & Hopwood, D. A. ( 1983; ). Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. Gene 25, 119-132.[CrossRef]
    [Google Scholar]
  48. Glauert, A. M. & Hopwood, D. A. ( 1961; ). The fine structure of Streptomyces violaceoruber (S. coelicolor). III. The walls of the mycelium and spores. J Biophys Biochem Cytol 10, 505-516.[CrossRef]
    [Google Scholar]
  49. Hansen, G. H. A. ( 1874; ). Undersogelser angaaende spedalskhedens aarsager. Norsk Magazin f Loegevidensk 4, 1-88.
    [Google Scholar]
  50. Hara, O. & Beppu, T. ( 1982; ). Mutants blocked in streptomycin production in Streptomyces griseus – the role of A-factor. J Antibiot 35, 349-358.[CrossRef]
    [Google Scholar]
  51. Harz, C. O. ( 1877; ). Actinomyces bovis, ein neuer Schimmel in den Geweben des Rindes. Jahresbericht der Königlichen Centralen Thierarzeneischule München für 1877/1878 5, 125-140.
    [Google Scholar]
  52. Hayakawa, T., Tanaka, T., Sakaguchi, K., Otake, N. & Yonehara, H. ( 1979; ). A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. J Gen Appl Microbiol 25, 255-260.[CrossRef]
    [Google Scholar]
  53. Hindle, Z. & Smith, C. P. ( 1994; ). Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12, 737-745.[CrossRef]
    [Google Scholar]
  54. Hodgson, D. A. ( 1982; ). Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol 128, 2417-2430.
    [Google Scholar]
  55. Hopwood, D. A. ( 1957; ). Genetic recombination in Streptomyces coelicolor. J Gen Microbiol 16, ii-iii.
    [Google Scholar]
  56. Hopwood, D. A. (1958). Genetic recombination in Streptomyces coelicolor. PhD thesis, University of Cambridge.
  57. Hopwood, D. A. ( 1959; ). Linkage and the mechanism of recombination in Streptomyces coelicolor. Ann NY Acad Sci 81, 887-898.
    [Google Scholar]
  58. Hopwood, D. A. ( 1960; ). Phase-contrast observations on Streptomyces coelicolor. J Gen Microbiol 22, 295-302.[CrossRef]
    [Google Scholar]
  59. Hopwood, D. A. ( 1965a; ). New data on the linkage map of Streptomyces coelicolor. Genet Res Cambridge 6, 248-262.[CrossRef]
    [Google Scholar]
  60. Hopwood, D. A. ( 1965b; ). A circular linkage map in the actinomycete Streptomyces coelicolor. J Mol Biol 12, 514-516.[CrossRef]
    [Google Scholar]
  61. Hopwood, D. A. ( 1966a; ). Nonrandom location of temperature-sensitive mutants on the linkage map of Streptomyces coelicolor. Genetics 54, 1169-1176.
    [Google Scholar]
  62. Hopwood, D. A. ( 1966b; ). Lack of constant genome ends in Streptomyces coelicolor. Genetics 54, 1177-1184.
    [Google Scholar]
  63. Hopwood, D. A. ( 1967; a). A possible circular symmetry of the linkage map of Streptomyces coelicolor. J Cell Physiol 70, Suppl. 1, 7–10.
    [Google Scholar]
  64. Hopwood, D. A. ( 1967b; ). Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31, 373-403.
    [Google Scholar]
  65. Hopwood, D. A. ( 1997; ). Genetic contributions to understanding polyketide synthases. Chem Rev 97, 2465-2497.[CrossRef]
    [Google Scholar]
  66. Hopwood, D. A. & Glauert, A. M. ( 1961; ). Electron microscope observations on the surface structures of Streptomyces violaceoruber. J Gen Microbiol 26, 325-330.[CrossRef]
    [Google Scholar]
  67. Hopwood, D. A. & Kieser, T. ( 1993; ). Conjugative plasmids in Streptomyces. In Bacterial Conjugation, pp. 293-311. Edited by D. B. Clewell. New York: Plenum.
  68. Hopwood, D. A. & Wright, H. M. ( 1973a; ). Transfer of a plasmid between Streptomyces species. J Gen Microbiol 77, 187-195.[CrossRef]
    [Google Scholar]
  69. Hopwood, D. A. & Wright, H. M. ( 1973b; ). Genetic studies on SCP1-prime strains of Streptomyces coelicolor A3(2). J Gen Microbiol 95, 107-120.
    [Google Scholar]
  70. Hopwood, D. A., Sermonti, G. & Spada-Sermonti, I. ( 1963; ). Heterozygous clones in Streptomyces coelicolor. J Gen Microbiol 30, 249-260.[CrossRef]
    [Google Scholar]
  71. Hopwood, D. A., Harold, R. J., Vivian, A. & Ferguson, H. M. ( 1969; ). A new kind of fertility variant in Streptomyces coelicolor. Genetics 62, 461-477.
    [Google Scholar]
  72. Hopwood, D. A., Wildermuth, H. & Palmer, H. M. ( 1970; ). Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61, 397-408.[CrossRef]
    [Google Scholar]
  73. Hopwood, D. A., Wright, H. M., Bibb, M. J. & Cohen, S. N. ( 1977; ). Genetic recombination through protoplast fusion in Streptomyces. Nature 268, 171-174.[CrossRef]
    [Google Scholar]
  74. Hopwood, D. A., Bibb, M. J., Ward, J. M. & Westpheling, J. ( 1979; ). Plasmids in Streptomyces coelicolor and related species. In Plasmids of Medical, Environmental and Commercial Importance, pp. 245-258. Edited by K. N. Timmis & A. Puhler. Amsterdam: Elsevier.
  75. Hopwood, D. A., Malpartida, F., Kieser, H. M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B. A. M., Floss, H. G. & Õmura, S. ( 1985a; ). Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314, 642-644.[CrossRef]
    [Google Scholar]
  76. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985b). Genetic Manipulation of Streptomyces: A Laboratory Manual. Norwich: John Innes Foundation.
  77. Janssen, G. R., Ward, J. M. & Bibb, M. J. ( 1989; ). Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes Dev 3, 415-429.[CrossRef]
    [Google Scholar]
  78. Kendall, K. J. & Cohen, S. N. ( 1988; ). Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol 170, 4634-4651.
    [Google Scholar]
  79. Khokhlov, A. S., Tovarova, I. I., Borisova, L. N., Pliner, S. A., Schevchenko, L. A., Kornitskaya, E. Y., Ivkina, N. S. & Rapoport, I. A. ( 1967; ). A-factor responsible for the biosynthesis of streptomycin by a mutant strain of Actinomyces streptomycini. Dokl Akad Nauk SSSR 177, 232-235.
    [Google Scholar]
  80. Khosla, C. & Zawada, R. J. ( 1996; ). Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotechnol 14, 335-341.[CrossRef]
    [Google Scholar]
  81. Kieser, T., Hopwood, D. A., Wright, H. M. & Thompson, C. J. ( 1982; ). pIJI01, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185, 223-238.[CrossRef]
    [Google Scholar]
  82. Kieser, H. M., Kieser, T. & Hopwood, D. A. ( 1992; ). A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174, 5496-5507.
    [Google Scholar]
  83. Kinashi, H. & Shimaji, M. ( 1987; ). Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot 40, 913-916.[CrossRef]
    [Google Scholar]
  84. Kirby, R. & Hopwood, D. A. ( 1977; ). Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 98, 239-252.[CrossRef]
    [Google Scholar]
  85. Kirby, R., Wright, L. F. & Hopwood, D. A. ( 1975; ). Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature 254, 265-267.[CrossRef]
    [Google Scholar]
  86. Kleiner, E. M., Pliner, S. A., Soifer, V. S., Onoprienko, V. V., Balashova, T. A., Rosynov, B. V. & Khokhlov, A. S. ( 1976; ). The structure of A-factor bioregulator from Streptomyces griseus. Bioorg Chem 2, 1142-1147.
    [Google Scholar]
  87. Klieneberger-Nobel, E. ( 1947; ). The life cycle of sporing Actinomyces as revealed by a study of their structure and septation. J Gen Microbiol 1, 22-32.[CrossRef]
    [Google Scholar]
  88. Kutzner, H. J. & Waksman, S. A. ( 1959; ). Streptomyces coelicolor Müller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. J Bacteriol 78, 528-538.
    [Google Scholar]
  89. Lawlor, E. J., Baylis, H. A. & Chater, K. F. ( 1987; ). Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1, 1305-1310.[CrossRef]
    [Google Scholar]
  90. Lederberg, J. ( 1952; ). Cell genetics and hereditary symbiosis. Physiol Res 32, 403-430.
    [Google Scholar]
  91. Lederberg, J. & Tatum, E. L. ( 1946; ). Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol 11, 113-114.[CrossRef]
    [Google Scholar]
  92. Lederberg, J., Lederberg, E. M., Zinder, N. D. & Lively, R. R. ( 1951; ). Recombination analysis of bacterial heredity. Cold Spring Harbor Symp Quant Biol 16, 413-443.[CrossRef]
    [Google Scholar]
  93. Leskiw, B. K., Bibb, M. J. & Chater, K. F. ( 1991; ). The use of a rare codon specifically during development? Mol Microbiol 5, 2861-2867.[CrossRef]
    [Google Scholar]
  94. Lin, Y.-S. & Chen, C. W. ( 1997; ). Instability of artificially circularised chromosomes of Streptomyces lividans. Mol Microbiol 26, 709-719.[CrossRef]
    [Google Scholar]
  95. Lin, Y.-S., Kieser, H. M., Hopwood, D. A. & Chen, C. W. ( 1993; ). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10, 923-933.[CrossRef]
    [Google Scholar]
  96. Lomovskaya, N. D., Mkrtumian, N. M. & Gostimskaya, N. L. ( 1970; ). Isolation and characteristics of Streptomyces coelicolor actinophage. Genetika 6, 135-137.
    [Google Scholar]
  97. Lonetto, M. A., Brown, K. L., Rudd, K. E. & Buttner, M. J. ( 1994; ). Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 91, 7573-7577.[CrossRef]
    [Google Scholar]
  98. Losick, R. & Pero, J. ( 1981; ). Cascades of sigma factors. Cell 25, 582-584.[CrossRef]
    [Google Scholar]
  99. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. ( 1993; ). Engineered biosynthesis of novel polyketides. Science 262, 1546-1550.[CrossRef]
    [Google Scholar]
  100. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. ( 1995; ). Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375, 549-554.[CrossRef]
    [Google Scholar]
  101. McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., Betlach, M. & Ashley, G. ( 1999; ). Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘unnatural’ natural products. Proc Natl Acad Sci USA 96, 1846-1851.[CrossRef]
    [Google Scholar]
  102. McGregor, J. F. ( 1954; ). Nuclear division and the life cycle in a Streptomyces sp. J Gen Microbiol 11, 52-56.[CrossRef]
    [Google Scholar]
  103. Malpartida, F. & Hopwood, D. A. ( 1984; ). Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309, 462-464.[CrossRef]
    [Google Scholar]
  104. Malpartida, F. & Hopwood, D. A. ( 1986; ). Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205, 66-73.[CrossRef]
    [Google Scholar]
  105. Matsumoto, A., Hong, S. K., Ishizuka, H., Horinouchi, S. & Beppu, T. ( 1994; ). Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146, 47-56.[CrossRef]
    [Google Scholar]
  106. Mattern, S. G., Brawner, M. E. & Westpheling, J. ( 1993; ). Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon. J Bacteriol 175, 1213-1220.
    [Google Scholar]
  107. Mazodier, P., Petter, R. & Thompson, C. ( 1989; ). Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171, 3583-3585.
    [Google Scholar]
  108. Merrick, M. J. ( 1976; ). A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96, 299-315.[CrossRef]
    [Google Scholar]
  109. Okanishi, M., Suzuki, K. & Umezawa, H. ( 1974; ). Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol 80, 389-400.[CrossRef]
    [Google Scholar]
  110. Onaka, H., Nakagawa, T. & Horinouchi, S. ( 1998; ). Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28, 743-753.
    [Google Scholar]
  111. Ono, H., Hintermann, G., Crameri, R., Wallis, G. & Hütter, R. ( 1982; ). Reiterated DNA sequences in a mutant strain of Streptomyces glaucescens and cloning of the sequence in Escherichia coli. Mol Gen Genet 186, 106-110.[CrossRef]
    [Google Scholar]
  112. Piret, J. M. & Chater, K. F. ( 1985; ). Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation. J Bacteriol 163, 965-972.
    [Google Scholar]
  113. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.[CrossRef]
    [Google Scholar]
  114. Robinson, M., Lewis, E. & Napier, E. ( 1981; ). Occurrence of reiterated DNA sequences in strains of Streptomyces produced by an interspecific protoplast fusion. Mol Gen Genet 182, 336-340.[CrossRef]
    [Google Scholar]
  115. Rudd, B. A. M. & Hopwood, D. A. ( 1979; ). Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol 114, 35-43.[CrossRef]
    [Google Scholar]
  116. Saito, H. ( 1957; ). Genetic recombination in Streptomyces griseoflavus. Microb Gen Bull 15, 25-26.
    [Google Scholar]
  117. Schrempf, H. ( 1982; ). Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. J Bacteriol 151, 701-707.
    [Google Scholar]
  118. Schrempf, H., Bujard, H., Hopwood, D. A. & Goebel, W. ( 1975; ). Isolation of covalently closed circular deoxyribonucleic acid from Streptomyces coelicolor A3(2). J Bacteriol 121, 416-421.
    [Google Scholar]
  119. Schwecke, T., Aparicio, J. F., Molnar, I. & 10 other authors ( 1995; ). The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92, 7839–7843.[CrossRef]
    [Google Scholar]
  120. Sermonti, G. & Casciano, S. ( 1963; ). Sexual polarity in Streptomyces coelicolor. J Gen Microbiol 33, 293-301.[CrossRef]
    [Google Scholar]
  121. Sermonti, G. & Spada-Sermonti, I. ( 1955; ). Genetic recombination in Streptomyces. Nature 176, 121.
    [Google Scholar]
  122. Sermonti, G., Mancinelli, A. & Spada-Sermonti, I. ( 1960; ). Heterogeneous clones (‘heteroclones’) in Streptomyces coelicolor A3(2). Genetics 45, 669-672.
    [Google Scholar]
  123. Sezonov, G., Hagège, J., Pernodet, J.-L., Friedmann, A. & Guerineau, M. ( 1995; ). Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol 17, 533-544.[CrossRef]
    [Google Scholar]
  124. Sherman, D. H., Malpartida, F., Bibb, M. J., Kieser, H. M. & Hopwood, D. A. ( 1989; ). Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J 8, 2717-2725.
    [Google Scholar]
  125. Shiffman, D. & Cohen, S. N. ( 1993; ). Role of the imp operon of the Streptomyces coelicolor genetic element SLP1: two imp-encoded proteins interact to autoregulate imp expression and control plasmid maintenance. J Bacteriol 175, 6767-6774.
    [Google Scholar]
  126. Skurray, R. A. & Reeves, P. ( 1973; ). Characterization of lethal zygosis associated with conjugation in Escherichia coli K-12. J Bacteriol 113, 58-70.
    [Google Scholar]
  127. Smith, B. & Dyson, P. ( 1995; ). Inducible transposition in Streptomyces lividans of insertion sequence IS6100 from Mycobacterium fortuitum. Mol Microbiol 18, 933-941.[CrossRef]
    [Google Scholar]
  128. Smith, C. P. & Chater, K. F. ( 1988; ). Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3(2) and identification of a closely associated transcription unit. Mol Gen Genet 211, 129-137.[CrossRef]
    [Google Scholar]
  129. Smith, M. C. M., Burns, R. N., Wilson, S. E. & Gregory, M. A. ( 1999; ). The complete genome sequence of the Streptomyces temperate phage ϕC31: evolutionary relationships to other viruses. Nucleic Acids Res 27, 2145-2155.[CrossRef]
    [Google Scholar]
  130. Solenberg, P. J. & Burgett, S. G. ( 1989; ). Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J Bacteriol 171, 4807-4813.
    [Google Scholar]
  131. Stahl, F. W. ( 1967; ). Circular genetic maps. J Cell Physiol 70, Suppl. 1, 1–12.
    [Google Scholar]
  132. Stanier, R. Y. ( 1942; ). Agar-decomposing strains of the Actinomyces coelicolor species-group. J Bacteriol 44, 555-570.
    [Google Scholar]
  133. Stuttard, C. ( 1979; ). Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces. J Gen Microbiol 110, 479-482.[CrossRef]
    [Google Scholar]
  134. Suarez, J. E. & Chater, K. F. ( 1980; ). Polyethylene glycol-assisted transfection of Streptomyces protoplasts. J Bacteriol 142, 8-14.
    [Google Scholar]
  135. Szybalski, W. ( 1959; ). Preface. In Genetics of Streptomyces and other antibiotic-producing microorganisms. Ann NY Acad Sci 81, 807.
    [Google Scholar]
  136. Tanaka, K., Shiina, T. & Takahashi, H. ( 1988; ). Multiple principal sigma factor homologs in eubacteria: identification of the ‘rpoD box’. Science 242, 1040-1042.[CrossRef]
    [Google Scholar]
  137. Thompson, C. J. & Gray, G. S. ( 1983; ). Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci USA 80, 5190-5194.[CrossRef]
    [Google Scholar]
  138. Thompson, C. J., Ward, J. M. & Hopwood, D. A. ( 1980; ). DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286, 525-527.[CrossRef]
    [Google Scholar]
  139. Umezawa, H. ( 1977; ). Microbial secondary metabolites with potential use in cancer treatment (plasmid involvement in biosynthesis and compounds). Biomedicine 26, 236-249.
    [Google Scholar]
  140. Vivian, A. ( 1971; ). Genetic control of fertility in Streptomyces coelicolor A3(2): plasmid involvement in the interconversion of uf and if strains. J Gen Microbiol 69, 353-364.[CrossRef]
    [Google Scholar]
  141. Vivian, A. & Hopwood, D. A. ( 1970; ). Genetic control of fertility in Streptomyces coelicolor A3(2): the if fertility type. J Gen Microbiol 64, 101-117.[CrossRef]
    [Google Scholar]
  142. Vivian, A. & Hopwood, D. A. ( 1973; ). Genetic control of fertility in Streptomyces coelicolor A3(2): new kinds of donor strains. J Gen Microbiol 76, 147-162.[CrossRef]
    [Google Scholar]
  143. Volff, J. N. & Altenbuchner, J. ( 1997; ). High frequency transposition of the Tn5 derivative Tn5493 in Streptomyces lividans. Gene 194, 81-86.[CrossRef]
    [Google Scholar]
  144. Volff, J. N. & Altenbuchner, J. ( 1998; ). Genetic instability of the Streptomyces chromosome. Mol Microbiol 27, 239-246.[CrossRef]
    [Google Scholar]
  145. Waksman, S. A. (1950). The Actinomycetes. Waltham, MA: Chronica Botanica.
  146. Westpheling, J., Ranes, M. & Losick, R. ( 1985; ). RNA polymerase heterogeneity in Streptomyces coelicolor. Nature 313, 22-27.[CrossRef]
    [Google Scholar]
  147. Wietzorrek, A. & Bibb, M. ( 1997; ). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25, 1177-1184.
    [Google Scholar]
  148. Willey, J., Schwedock, J. & Losick, R. ( 1993; ). Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev 7, 895-903.[CrossRef]
    [Google Scholar]
  149. Wright, L. F. & Hopwood, D. A. ( 1976a; ). Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol 95, 96-106.[CrossRef]
    [Google Scholar]
  150. Wright, L. F. & Hopwood, D. A ( 1976b; ). Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolor A3(2). J Gen Microbiol 96, 289-297.[CrossRef]
    [Google Scholar]
  151. Yamada, Y., Sugamura, K., Kondo, K. & Yanagimoto, M. ( 1987; ). The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J Antibiot 40, 496-504.[CrossRef]
    [Google Scholar]
  152. Zakrzewska-Czerwinska, J. & Schrempf, H. ( 1992; ). Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol 174, 2688-2693.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2183
Loading
/content/journal/micro/10.1099/00221287-145-9-2183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error