1887

Abstract

The plant-pathogenic bacterium subsp. causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an mutant of the subsp. strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses and to be deficient in glycogen accumulation. The production of extracellular enzymes was similar in the mutant and in the wild-type strains. However, the mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes , but did not grow to higher cell density compared to the wild- type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild- type strain and . These results suggest that a functional gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3547
1999-12-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453547a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3547&mimeType=html&fmt=ahah

References

  1. Anderson M., Politt C. E., Roberts I. S., Eastgate J. A.. 1998; Identification and characterization of the Erwinia amylovora rpoS gene: RpoS is not involved in induction of fireblight disease symptoms. . J Bacteriol180:6789–6792
    [Google Scholar]
  2. Andersson R. A., Palva E. T., Pirhonen M.. 1999; The response regulator ExpM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (σ S). Mol Plant–Microbe Interact12:575–584[CrossRef]
    [Google Scholar]
  3. Bearson S. M., Benjamin, W. H.Jr , Swords W. E., Foster J. W.. 1996; Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol178:2572–2579
    [Google Scholar]
  4. Beers R. F., Sizer I. W.. 1952; A spectrophotometric assay for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem196:133–140
    [Google Scholar]
  5. Calcutt M. J., Becker-Hapak, M., Gaut, M., Hoerter J., Eisenstark A.. 1998; The rpoS gene of Erwinia carotovora: gene organization and functional expression in E. coli. FEMS Microbiol Lett159:275–281[CrossRef]
    [Google Scholar]
  6. Chatterjee A., Cui Y., Liu Y., Dumenyo C. K., Chatterjee A. K.. 1995; Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the abscence of the starvation/cell density sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. . Appl Environ Microbiol61:1959–1967
    [Google Scholar]
  7. Cui Y., Chatterjee A., Liu Y., Dumenyo C. K., Chatterjee A. K.. 1995; Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N -(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft- rotting Erwinia spp. J Bacteriol177:5108–5115
    [Google Scholar]
  8. Cui Y., Madi L., Mukherjee A., Dumenyo C. K., Chatterjee A. K.. 1996; The RsmA mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpN Ecc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol Plant–Microbe Interact9:565–573[CrossRef]
    [Google Scholar]
  9. Du H., Klessig D. F.. 1997; Role for salicylic acid in the activation of defense responses in catalase-deficient transgenic tobacco. Mol Plant–Microbe Interact10:922–925[CrossRef]
    [Google Scholar]
  10. Eriksson A. R., B., Andersson, R. A., Pirhonen M., Palva E. T.. 1998; Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant–Microbe Interact11:743–752[CrossRef]
    [Google Scholar]
  11. Fang F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood J., Guiney D. C.. 1992; The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA89:11978–11982[CrossRef]
    [Google Scholar]
  12. Fellay R., Frey J., Krisch H.. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene52:147–154[CrossRef]
    [Google Scholar]
  13. Flavier A. B., Schell M. A., Denny T. P.. 1998; An RpoS (σS ) homologue regulates acylserine lactone-dependent autoinduction in Ralstonia solanacearum. Mol Microbiol28:475–486[CrossRef]
    [Google Scholar]
  14. Frederick R. D., Chiu J., Bennetzen J. L., Handa A. K.. 1997; Identification of a pathogenicity locus, rpfA, in Erwinia carotovora subsp. carotovora that encodes a two component sensor- regulator protein. Mol Plant–Microbe Interact10:407–415[CrossRef]
    [Google Scholar]
  15. Giaever H. M., Styrvold O. B., Kaasen I., Strøm A. R.. 1988; Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol170:2841–2849
    [Google Scholar]
  16. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  17. Harris S. J., Shih Y.-L., Bentley S. D., Salmond G. P. C.. 1998; The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol Microbiol28:705–717
    [Google Scholar]
  18. Hassouni M. E., Chambost, J. P., Expert, D., van Gijsegem F., Barras F.. 1999; The minimal set member msrA , encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc Natl Acad Sci USA96:887–892[CrossRef]
    [Google Scholar]
  19. Hengge-Aronis R.. 1993; Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell72:165–168[CrossRef]
    [Google Scholar]
  20. Hengge-Aronis R.. 1996; Back to log phase: σ S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol21:887–893[CrossRef]
    [Google Scholar]
  21. Jishage M., Ishihama A.. 1995; Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. J Bacteriol177:6832–6835
    [Google Scholar]
  22. Jones S., Yu B., Bainton N. J..11 other authors 1993; The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J12:2477–2482
    [Google Scholar]
  23. Kaasen I., Falkenberg P., Styrvold O. B., Strøm A. R.. 1992; Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli : evidence that transcription is activated by katF (AppR). J Bacteriol174:889–898
    [Google Scholar]
  24. Lange R., Hengge-Aronis R.. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli . Mol Microbiol5:49–59[CrossRef]
    [Google Scholar]
  25. Latil-Damotte M., Lares C.. 1977; Relative order of glg mutations affecting glycogen biosynthesis in Escherichia coli K12. Mol Gen Genet150:325–328[CrossRef]
    [Google Scholar]
  26. Liu Y., Murata H., Chatterjee A., Chatterjee A. K.. 1993; Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. Mol Plant–Microbe Interact6:299–308[CrossRef]
    [Google Scholar]
  27. Liu Y., Cui Y., Mukherjee A., Chatterjee A. K.. 1998; Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol29:219–234[CrossRef]
    [Google Scholar]
  28. Liu Y., Jiang G., Cui Y., Mukherjee A., Ma W. L., Chatterjee A. K.. 1999; kdgR Ecc negatively regulates genes for pectinases, cellulase, protease, harpinEcc, and a global RNA regulator in Erwinia carotovora subsp. carotovora. J Bacteriol181:2411–2421
    [Google Scholar]
  29. Loewen P. C., Hengge-Aronis R.. 1994; The role of the sigma factor σS (KatF) in bacterial global regulation. . Annu Rev Microbiol48:53–80[CrossRef]
    [Google Scholar]
  30. Loewen P. C., Hu B., Strutinsky J., Sparling R.. 1998; Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol44:707–717[CrossRef]
    [Google Scholar]
  31. de Lorenzo V., Timmis K. N.. 1994; Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5 - and Tn10-derived minitransposons. Methods Enzymol235:386–405
    [Google Scholar]
  32. McMillan G. P., Hedley D., Fyffe L., Pérombelon M. C. M.. 1993; Potato resistance to soft-rot erwinias is related to cell wall pectin esterification. . Physiol Mol Plant Pathol42:279–289[CrossRef]
    [Google Scholar]
  33. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Moskovitz J., Rahman M. A., Strassman J., Yancey S. O., Kushner S. R., Brot N., Weissbach H.. 1995; Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol177:502–507
    [Google Scholar]
  35. Muffler A., Fischer D., Altuvia S., Storz G., Hengge-Aronis R.. 1996; The response regulator RssB controls stability of the σS subunit of RNA polymerase in Escherichia coli. EMBO J15:1333–1339
    [Google Scholar]
  36. Mukherjee A., Cui Y., Liu Y., Dumenyo C. K., Chatterjee A. K.. 1996; Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology142:427–434[CrossRef]
    [Google Scholar]
  37. Mukherjee A., Cui Y., Ma W., Liu Y., Ishihama A., Eisenstark A., Chatterjee A. K.. 1998; RpoS (sigma-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. J Bacteriol180:3629–3634
    [Google Scholar]
  38. Mulvey M. R., Sorby, P. A., Triggs-Raine B. L., Loewen P. C.. 1988; Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene73:337–345[CrossRef]
    [Google Scholar]
  39. Murata H., McEvoy J. L., Chatterjee, A., Collmer A., Chatterjee A. K.. 1991; Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovora subsp. carotovora. Mol Plant–Microbe Interact4:239–246[CrossRef]
    [Google Scholar]
  40. Murata H., Chatterjee A., Liu Y., Chatterjee A. K.. 1994; Regulation of the production of extracellular pectinase, cellulase, and protease in the soft rot bacterium Erwinia carotovora subsp. carotovora : evidence that aepH of E. carotovora subsp. carotovora 71 activates gene expression in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Escherichia coli. Appl Environ Microbiol60:3150–3159
    [Google Scholar]
  41. Palva T. K., Hurtig M., Saindrenan P., Palva E. T.. 1994; Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Mol Plant–Microbe Interact7:356–363[CrossRef]
    [Google Scholar]
  42. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P.. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA91:197–201[CrossRef]
    [Google Scholar]
  43. Pirhonen M., Heino P., Helander I., Harju P., Palva E. T.. 1988; Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. . Microb Pathog4:359–367[CrossRef]
    [Google Scholar]
  44. Pirhonen M., Saarilahti H., Karlsson M.-B., Palva E. T.. 1991; Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. Mol Plant–Microbe Interact4:276–283[CrossRef]
    [Google Scholar]
  45. Pirhonen M., Flego D., Heikinheimo R., Palva E. T.. 1993; A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. . EMBO J12:2467–2476
    [Google Scholar]
  46. Pratt L. A., Silhavy T. J.. 1996; The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci USA93:2488–2492[CrossRef]
    [Google Scholar]
  47. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  48. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E.. 1995; The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. . Proc Natl Acad Sci USA92:12255–12259[CrossRef]
    [Google Scholar]
  49. Swords W. E., Cannon B. M., Benjamin W. H. Jr. 1997; Avirulence of LT2 strains of Salmonella typhimurium results from a defective rpoS gene. Infect Immun65:2451–2453
    [Google Scholar]
  50. Takahashi H., Chen Z., Du H., Liu Y., Klessig D. F.. 1997; Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J11:993–1005[CrossRef]
    [Google Scholar]
  51. Thomson N. R., Cox A., Bycroft B. W., Stewart G. S. A. B., Williams P., Salmond G. P. C.. 1997; The Rap and Hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol26:531–544[CrossRef]
    [Google Scholar]
  52. Thomson N. R., Nasser W., McGowan S., Sebaihia M., Salmond G. P. C.. 1999; Erwinia carotovora has two KdgR-like proteins belonging to the IclR family of transcriptional regulators: identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis. Microbiology145:1531–1545[CrossRef]
    [Google Scholar]
  53. Vidal S., Eriksson, A. R. B., Montesano, M., Denecke J., Palva E. T.. 1998; Cell wall-degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent induction of a plant defense response. . Mol Plant–Microbe Interact11:23–32[CrossRef]
    [Google Scholar]
  54. Wilmes-Riesenberg M. R., Foster J. W., Curtiss R. III. 1997; An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun65:203–210
    [Google Scholar]
  55. Wilson G. G., Young, K. K. Y., Edlin G. J., Konigsberg W.. 1979; High-frequency generalised transduction by bacteriophage T4. Nature280:80–82[CrossRef]
    [Google Scholar]
  56. Zambrano M. M., Siegele, D. A., Almiron, M., Tormo A., Kolter R.. 1993; Microbial competition: Escherichia coli mutants that take over stationary phase cultures. . Science259:1757–1760[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3547
Loading
/content/journal/micro/10.1099/00221287-145-12-3547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error