Intracellular survival of complex isolates in the presence of macrophage cell activation Free

Abstract

Strains of the complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that CEP021 (genomovar VI), and (previously genomovar V) CEP040 can survive in PU5- 1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma- primed uninfected cells. We propose that the ability of to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3465
1999-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453465a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3465&mimeType=html&fmt=ahah

References

  1. Amano F., Noda T. 1995; Improved detection of nitric oxide radical (NO·) production in an activated macrophage culture with a radical scavenger, carboxy PTIO, and Griess reagent. FEBS Lett 368:425–428 [CrossRef]
    [Google Scholar]
  2. Bals R., Weiner D. J., Wilson J. M. 1999; The innate immune system in cystic fibrosis lung disease. J Clin Invest 103:303–307 [CrossRef]
    [Google Scholar]
  3. Bass D. A., Parce J. W., Dechatelet L. R. P. S., Seeds M. C., Thomas M. 1983; Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917
    [Google Scholar]
  4. Biragyn A., Nedospasov S. A. 1995; Lipopolysaccharide-induced expression of TNF-α gene in the macrophage cell line ANA-1 is regulated at the level of transcription processivity. J Immunol 155:674–683
    [Google Scholar]
  5. Brown M. R. W., Barker J. 1999; Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7:46–50 [CrossRef]
    [Google Scholar]
  6. Burns J. L., Jonas M., Chi E. Y., Clark D. K., Berger A., Griffith A. 1996; Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect Immun 64:4054–4059
    [Google Scholar]
  7. Bye M. R., Ewig J. M., Quittell L. M. 1994; Cystic fibrosis. . Lung 172:251–270 [CrossRef]
    [Google Scholar]
  8. Caron E., Peyrard T., Kohler S., Cabane S., Liautard J. P., Dornand J. 1994; Live Brucella spp. fail to induce tumour necrosis factor alpha excretion upon infection of U937- derived phagocytes. Infect Immun 62:5267–5274
    [Google Scholar]
  9. Cheng P. W., Boat T. F., Cranfill K., Yankaskas J. R., Boucher R. C. 1989; Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84:68–72 [CrossRef]
    [Google Scholar]
  10. Crowle A. J., Sbarbaro J. A., Judson F. N., Douvas G. S., May M. H. 1984; Inhibition by streptomycin of tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 130:839–844
    [Google Scholar]
  11. D’Acquisto F., Sautebin L., Iuvone T., Di Rosa M., Carnuccio R. 1998; Prostaglandins prevent inducible nitric oxide synthase protein expression by inhibiting nuclear factor- kappaB activation in J774 macrophages. FEBS Lett 440:76–80 [CrossRef]
    [Google Scholar]
  12. Dofferhoff A. S., Esselink M. T., de Vries-Hospers H. G., van Zanten A., Bom V. J., Weits J., Vellenga E. 1993; The release of endotoxin from antibiotic-treated Escherichia coli and the production of tumour necrosis factor by human monocytes. J Antimicrob Chemother 31:373–384 [CrossRef]
    [Google Scholar]
  13. Drevets D. A., Canono B. P., Leenen P. J., Campbell P. A. 1994; Gentamicin kills intracellular Listeria monocytogenes. Infect Immun 62:2222–2228
    [Google Scholar]
  14. Elsinghorst E. A. 1994; Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420
    [Google Scholar]
  15. FitzSimmons S. 1996 United States cystic fibrosis foundation database Bethesda, MD: Cystic Fibrosis Foundation;
    [Google Scholar]
  16. Gessner A. R., Mortensen J. E. 1990; Pathogenic factors of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Med Microbiol 33:115–120 [CrossRef]
    [Google Scholar]
  17. Gilligan P. H. 1991; Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51
    [Google Scholar]
  18. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
    [Google Scholar]
  19. Govan J. R., Hughes J. E., Vandamme P. 1996; Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45:395–407 [CrossRef]
    [Google Scholar]
  20. Granger D. L., Hibbs J. B., Perfect J. R., Durack D. T. 1990; Metabolic fate of l- arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest 85:264–267 [CrossRef]
    [Google Scholar]
  21. Gross A., Spiesser S., Terraza A., Rouot B., Caron E., Dornand J. 1998; Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect Immun 66:1309–1316
    [Google Scholar]
  22. Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B. 1984; Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide: evidence for increased activity of the superoxide- producing enzyme. J Exp Med 160:1656–1671 [CrossRef]
    [Google Scholar]
  23. Hassett D. J., Cohen M. S. 1989; Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3:2574–2582
    [Google Scholar]
  24. Hondalus M. K., Mosser D. M. 1994; Survival and replication of Rhodococcus equi in macrophages. . Infect Immun 62:4167–4175
    [Google Scholar]
  25. Hughes J. E., Stewart J., Barclay G. R., Govan J. R. 1997; Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia . Infect Immun 65:4281–4287
    [Google Scholar]
  26. Hutchinson M. L., Poxton I. R., Govan J. R. 1998; Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66:2033–2039
    [Google Scholar]
  27. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210 [CrossRef]
    [Google Scholar]
  28. Jett B. D., Hatter K. L., Huycke M. M., Gilmore M. S. 1997; Simplified agar plate method for quantifying viable bacteria. Biotechniques 23:648–650
    [Google Scholar]
  29. Jones A. L., Beveridge T. J., Woods D. E. 1996; Intracellular survival of Burkholderia pseudomallei. Infect Immun 64:782–790
    [Google Scholar]
  30. Kirikae T., Kirikae F., Saito S., Tominaga K., Tamura H., Uemura Y., Yokochi T., Nakano M. 1998; Biological characterization of endotoxins released from antibiotic- treated Pseudomonas aeruginosa and Escherichia coli. Antimicrob Agents Chemother 42:1015–1021
    [Google Scholar]
  31. Lasfargues A., Tahri-Jouti M. A., Pedron T., Girard R., Chaby R. 1989; Effects of lipopolysaccharide on macrophages analyzed with anti-lipid A monoclonal antibodies and polymyxin B. Eur J Immunol 19:2219–2225 [CrossRef]
    [Google Scholar]
  32. van de Loosdrecht A. A., Nennie E., Ossenkoppele G. J., Beelen R. H., Langenhuijsen M. M. 1991; Cell mediated cytotoxicity against U937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: a methodological study. . J Immunol Methods 141:15–22 [CrossRef]
    [Google Scholar]
  33. Lowenstein C. J., Dinerman J. L., Snyder S. H. 1994; Nitric oxide: a physiologic messenger. Ann Intern Med 120:227–237 [CrossRef]
    [Google Scholar]
  34. Marolda C. L., Hauröder B., John M. A., Michel R., Valvano M. A. 1999; Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145:1509–1517 [CrossRef]
    [Google Scholar]
  35. Martin C. A., Dorf M. E. 1990; Interleukin-6 production by murine macrophage cell lines P388D1 and J774A.1: stimulation requirements and kinetics. Cell Immunol 128:555–568 [CrossRef]
    [Google Scholar]
  36. Mehta P. K., King C. H., White E. H., Mutagh J. J., Quinn F. D. 1996; Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun 64:2673–2679
    [Google Scholar]
  37. Miliotis M. D. 1991; Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol 29:830–831
    [Google Scholar]
  38. Nibbering P. H., Van Furth R. 1988; Quantitative immunocytochemical characterization of four murine macrophage-like cell lines. . Immunobiology 176:432–439 [CrossRef]
    [Google Scholar]
  39. Oelschlaeger T. A., Tall B. D. 1997; Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect Immun 65:2950–2958
    [Google Scholar]
  40. Perotto S., Bonfante P. 1997; Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501 [CrossRef]
    [Google Scholar]
  41. Rost F. W. D. 1995 Fluorescence Microscopy Cambridge: Cambridge University Press;
    [Google Scholar]
  42. Salzman G. C., Singham S. B., Johnston R. G., Bohren C. F. 1990; Light scattering and cytometry. In Flow Cytometry and Sorting pp. 81–107Edited by Melamed M. R., Lindmo T., Mendelsohn M. L. New York: Wiley-Liss;
    [Google Scholar]
  43. di Sant’Agnese P. A., Davis P. B. 1976; Research in cystic fibrosis. N Engl J Med 295:597–602 [CrossRef]
    [Google Scholar]
  44. Shaw D., Poxton I. R., Govan J. R. 1995; Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. FEMS Immunol Med Microbiol 11:99–106 [CrossRef]
    [Google Scholar]
  45. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. 1996; Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236 [CrossRef]
    [Google Scholar]
  46. Smith A. W., Green J., Eden C. E., Watson M. L. 1999; Nitric oxide-induced potentiation of the killing of Burkholderia cepacia by reactive oxygen species: implications for cystic fibrosis. . J Med Microbiol 48:419–423 [CrossRef]
    [Google Scholar]
  47. Speert D. P., Bond M., Woodman R. C., Curnutte J. T. 1994; Infection with Pseudomonas cepacia in chronic granulomatosis disease: role of non-oxidative killing by neutrophils in host defense. J Infect Dis 170:1524–1531 [CrossRef]
    [Google Scholar]
  48. Stuehr D. J., Marletta M. 1985; Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742 [CrossRef]
    [Google Scholar]
  49. Stuehr D. J., Marletta M. 1987; Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-γ. J Immunol 139:518–525
    [Google Scholar]
  50. Summersgill J. T., Powell L. A., Buster B. L., Miller R. D., Ramirez J. A. 1992; Killing of Legionella pneumophila by nitric oxide in gamma-interferon- activated macrophages. J Leukoc Biol 52:625–629
    [Google Scholar]
  51. Vandamme P., Holmes B., Vancanneyt M.8 other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200 [CrossRef]
    [Google Scholar]
  52. Venkataprasad N., Shiratsuchi H., Johnson J. L., Ellner J. J. 1996; Induction of prostaglandin E2 by human monocytes infected with Mycobacterium avium complex: modulation of cytokine expression. J Infect Dis 174:806–811 [CrossRef]
    [Google Scholar]
  53. Vosbeck K., Tobias P., Mueller H., Allen R. A., Arfors K. E., Ulevitch R. J., Sklar L. A. 1990; Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. . J Leukoc Biol 47:97–104
    [Google Scholar]
  54. Wewers M. D. 1997; Cytokines and macrophages. In Cytokines in Health and Disease pp. 339–355Edited by Remick D. G. , Friedland J. S. New York: Marcel Dekker;
    [Google Scholar]
  55. Yao Z., Liu H., Valvano M. A. 1992; Acetylation of O- specific lipopolysaccharides from Shigella flexneri 3a and 2a occurs in Escherichia coli K-12 carrying cloned S. flexneri 3a and 2a rfb genes. J Bacteriol 174:7500–7508
    [Google Scholar]
  56. Zughaier S. M., Ryley H. C., Jackson S. K. 1999; Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumour necrosis factor alpha from human monocytes. . Infect Immun 67:1505–1507
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3465
Loading
/content/journal/micro/10.1099/00221287-145-12-3465
Loading

Data & Media loading...

Most cited Most Cited RSS feed