1887

Abstract

Tripartite ATP-independent periplasmic transporters (TRAP-T) represent a novel type of secondary active transporter that functions in conjunction with an extracytoplasmic solute-binding receptor. The best characterized TRAP-T family member is from and is specific for C-dicarboxylates [Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. (1997). 179, 5482–5493]. It consists of three essential proteins, DctP, a periplasmic C-dicarboxylate-binding receptor, and two integral membrane proteins, DctM and DctQ, which probably span the membrane 12 and 4 times, respectively. Homologues of DctM, DctP and DctQ were identified in all major bacterial subdivisions as well as in archaea. An orphan DctP homologue in the Gram-positive bacterium may serve as a receptor for a two- component transcriptional regulatory system rather than as a constituent of a TRAP-T system. Phylogenetic data suggest that all present day TRAP-T systems probably evolved from a single ancestral transporter with minimal shuffling of constituents between systems. Homologous TRAP-T constituents exhibit decreasing degrees of sequence identity in the order DctM>DctP>DctQ. DctM appears to belong to a large superfamily of transporters, the ion transporter (IT) superfamily, one member of which can function by either protonmotive force- or ATP-dependent energization. It is proposed that IT superfamily members exhibit the unusual capacity to function in conjunction with auxiliary proteins that modify the transport process by providing (i) high-affinity solute reception, (ii) altered energy coupling and (iii) additional yet to be defined functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3431
1999-12-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453431a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3431&mimeType=html&fmt=ahah

References

  1. Altschul, S. F. , Gish, W. , Miller, W. , Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F. , Madden, T. L. , Schäffer, A. A. , Zhang, J. , Zhang, Z. , Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi- blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402 .[CrossRef]
    [Google Scholar]
  3. Ames, G. F.-L. ( 1986; ). Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55, 397-425.[CrossRef]
    [Google Scholar]
  4. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48-54.[CrossRef]
    [Google Scholar]
  5. Bairoch, A. , Bucher, P. & Hofmann, K. ( 1997; ). The PROSITE database, its status in 1997. Nucleic Acids Res 25, 217-221.[CrossRef]
    [Google Scholar]
  6. Berks, B. C. , Richardson, D. J. , Reilly, A. , Willis, A. C. & Ferguson, S. J. ( 1995; ). The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309, 983-992.
    [Google Scholar]
  7. Blair, A. , Ngo, L. , Park, J. , Paulsen, I. T. & Saier, M. H.Jr ( 1996; ). Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. Microbiology 142, 17-32.[CrossRef]
    [Google Scholar]
  8. Boos, W. & Lucht, J. M. (1996). Periplasmic binding protein-dependent ABC transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 1175–1209. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  9. Cangelosi, G. A. , Ankenbauer, R. G. & Nester, E. W. ( 1990; ). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87, 6708-6712 .[CrossRef]
    [Google Scholar]
  10. Dayhoff, M. O. , Barker, W. C. & Hunt, L. T. ( 1983; ). Establishing homologies in protein sequences. Methods Enzymol 91, 524-545.
    [Google Scholar]
  11. Devereux, J. , Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.[CrossRef]
    [Google Scholar]
  13. Feng, D.-F. & Doolittle, R. F. ( 1990; ). Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183, 375-387.
    [Google Scholar]
  14. Forward, J. A. , Behrendt, M. C. , Wyborn, N. R. , Cross, R. & Kelly, D. J. ( 1997; ). TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse Gram-negative bacteria. J Bacteriol 179, 5482-5493 .
    [Google Scholar]
  15. Grundy, W. N. , Bailey, T. L. , Elkan, C. P. & Baker, M. E. ( 1997; ). Meta-meme: motif-based hidden Markov models of protein families. Comput Appl Biosci 13, 397-406.
    [Google Scholar]
  16. Hamblin, M. J. , Shaw, J. G. , Curson, J. P. & Kelly, D. J. ( 1990; ). Mutagenesis, cloning and complementation analysis of C4-dicarboxylate transport genes from Rhodobacter capsulatus. Mol Microbiol 4, 1567-1574.[CrossRef]
    [Google Scholar]
  17. Higgins, C. F. ( 1992; ). ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8, 67-113.[CrossRef]
    [Google Scholar]
  18. Higgins, C. F. , Hyde, S. C. , Mimmack, M. M. , Gileadi, U. , Gill, D. R. & Gallagher, M. P. ( 1990; ). Binding protein- dependent transport systems. J Bioenerg Biomembr 22, 571-592.[CrossRef]
    [Google Scholar]
  19. Huala, E. , Stigter, J. & Ausubel, F. M. ( 1992; ). The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription. J Bacteriol 174, 1428-1431 .
    [Google Scholar]
  20. Hyde, S. C., Emsley, P., Hartshorn, M. J. & 7 other authors ( 1990; ). Structural model of ATP- binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362–365.[CrossRef]
    [Google Scholar]
  21. Jacobs, M. H. J. , van der Heide, T. , Driessen, A. J. M. & Konings, W. N. ( 1996; ). Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Proc Natl Acad Sci USA 93, 12786-12790 .[CrossRef]
    [Google Scholar]
  22. Kemner, J. M. , Liang, X. & Nester, E. W. ( 1997; ). The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC- type sugar transport operon. J Bacteriol 179, 2452-2458 .
    [Google Scholar]
  23. Klenk, H.-P., Clayton, R. A., Tomb, J.-F. & 48 other authors ( 1997; ). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370.[CrossRef]
    [Google Scholar]
  24. Kuan, G. , Dassa, E. , Saurin, W. , Hofnung, M. & Saier, M. H.Jr ( 1995; ). Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 146, 271-278.[CrossRef]
    [Google Scholar]
  25. Kuroda, M. , Dey, S. , Sanders, O. I. & Rosen, B. P. ( 1997; ). Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem 272, 326-331.[CrossRef]
    [Google Scholar]
  26. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-132.[CrossRef]
    [Google Scholar]
  27. Le, T. , Tseng, T.-T. & Saier, M. H.Jr ( 1999; ). Flexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Mol Membr Biol 16, 173-179.[CrossRef]
    [Google Scholar]
  28. Maloney, P. C. ( 1994; ). Bacterial transporters. Curr Opin Cell Biol 6, 571-582.[CrossRef]
    [Google Scholar]
  29. Maloney, P. C. & Wilson, T. H. (1996). Ion-coupled transport and transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 1130–1148. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  30. Nakatsu, C. H. , Korona, R. , Lenski, R. E. , DeBruijn, F. J. , Marsh, T. L. & Forney, L. J. ( 1998; ). Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J Bacteriol 180, 4325-4331 .
    [Google Scholar]
  31. Nikaido, H. & Saier, M. H.Jr ( 1992; ). Transport proteins in bacteria: common themes in their design. Science 258, 936-942.[CrossRef]
    [Google Scholar]
  32. Obis, D., Guillot, A., Gripon, J.-C., Renault, P., Bolotine, A. & Mistou, M. Y. (1999). Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol (in press).
  33. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85, 2444-2448 .[CrossRef]
    [Google Scholar]
  34. Postma, P. W. , Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  35. Quiocho, F. A. & Ledvina, P. S. ( 1996; ). Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20, 17-25.[CrossRef]
    [Google Scholar]
  36. Saier, M. H.Jr ( 1994; ). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58, 71-93.
    [Google Scholar]
  37. Saier, M. H.Jr ( 1998; ). Molecular phylogeny as a basis for the classification of transport proteins from Bacteria, Archaea and Eukarya. Adv Microb Physiol 40, 81-136.
    [Google Scholar]
  38. Saier, M. H.Jr ( 1999; ). Eukaryotic transmembrane solute transport systems. In International Review of Cytology: a Survey of Cell Biology, pp. 61-136. Edited by K. W. Jeon. San Diego: Academic Press.
  39. Saier, M. H., Jr & Tseng, T.-T. (1999). Evolutionary origins of transmembrane transport systems. In Transport of Molecules Across Microbial Membranes, Society for General Microbiology Symposium 58, pp. 252–274. Cambridge: Cambridge University Press.
  40. Saurin, W. , Hofnung, M. & Dassa, E. ( 1999; ). Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48, 22-41.[CrossRef]
    [Google Scholar]
  41. Shaw, J. G. & Kelly, D. J. ( 1991; ). Binding protein dependent transport of C4-dicarboxylates in Rhodobacter capsulatus. Arch Microbiol 155, 466-472.[CrossRef]
    [Google Scholar]
  42. Shaw, J. G. , Hamblin, M. J. & Kelly, D. J. ( 1991; ). Purification, characterization and nucleotide sequence of the periplasmic C4 -dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Mol Microbiol 5, 3055-3062.[CrossRef]
    [Google Scholar]
  43. Silver, S. , Ji, G. , Bröer, S. , Dey, S. , Du, D. & Rosen, B. P. ( 1993; ). Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8, 637-642.[CrossRef]
    [Google Scholar]
  44. Tam, R. & Saier, M. H.Jr ( 1993; ). Structural, functional, and evolutionary relationships among extracellular solute- binding receptors of bacteria. Microbiol Rev 57, 320-346.
    [Google Scholar]
  45. Thompson, J. D. , Gibson, T. J. , Plewniak, F. , Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882 .[CrossRef]
    [Google Scholar]
  46. Tseng, T.-T. , Gratwick, K. S. , Kollman, J. , Park, D. , Nies, D. H. , Goffeau, A. & Saier, M. H.Jr ( 1999; ). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1, 107-125.
    [Google Scholar]
  47. Walmsley, A. R. , Shaw, J. G. & Kelly, D. J. ( 1992; ). The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem 267, 8064-8072 .
    [Google Scholar]
  48. Winans, S. C. ( 1991; ). An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 5, 2345-2350.[CrossRef]
    [Google Scholar]
  49. Young, G. B. , Jack, D. L. , Smith, D. W. & Saier, M. H.Jr ( 1999; ). The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415, 306-322 .[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3431
Loading
/content/journal/micro/10.1099/00221287-145-12-3431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error