1887

Abstract

Tripartite ATP-independent periplasmic transporters (TRAP-T) represent a novel type of secondary active transporter that functions in conjunction with an extracytoplasmic solute-binding receptor. The best characterized TRAP-T family member is from and is specific for C-dicarboxylates [Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. (1997). 179, 5482–5493]. It consists of three essential proteins, DctP, a periplasmic C-dicarboxylate-binding receptor, and two integral membrane proteins, DctM and DctQ, which probably span the membrane 12 and 4 times, respectively. Homologues of DctM, DctP and DctQ were identified in all major bacterial subdivisions as well as in archaea. An orphan DctP homologue in the Gram-positive bacterium may serve as a receptor for a two- component transcriptional regulatory system rather than as a constituent of a TRAP-T system. Phylogenetic data suggest that all present day TRAP-T systems probably evolved from a single ancestral transporter with minimal shuffling of constituents between systems. Homologous TRAP-T constituents exhibit decreasing degrees of sequence identity in the order DctM>DctP>DctQ. DctM appears to belong to a large superfamily of transporters, the ion transporter (IT) superfamily, one member of which can function by either protonmotive force- or ATP-dependent energization. It is proposed that IT superfamily members exhibit the unusual capacity to function in conjunction with auxiliary proteins that modify the transport process by providing (i) high-affinity solute reception, (ii) altered energy coupling and (iii) additional yet to be defined functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3431
1999-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453431a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3431&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller W., Lipman D. J. 1997; Gapped blast and psi- blast: a new generation of protein database search programs. . Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ames G. F.-L. 1986; Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55:397–425 [CrossRef]
    [Google Scholar]
  4. Bailey T. L., Gribskov M. 1998; Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54 [CrossRef]
    [Google Scholar]
  5. Bairoch A., Bucher P., Hofmann K. 1997; The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221 [CrossRef]
    [Google Scholar]
  6. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. 1995; The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309:983–992
    [Google Scholar]
  7. Blair A., Ngo L., Park J., Paulsen I. T., Saier M. H. Jr 1996; Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. Microbiology 142:17–32 [CrossRef]
    [Google Scholar]
  8. Boos W., Lucht J. M. 1996; Periplasmic binding protein-dependent ABC transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1175–1209Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Cangelosi G. A., Ankenbauer R. G., Nester E. W. 1990; Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87:6708–6712 [CrossRef]
    [Google Scholar]
  10. Dayhoff M. O., Barker W. C., Hunt L. T. 1983; Establishing homologies in protein sequences. Methods Enzymol 91:524–545
    [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Feng D.-F., Doolittle R. F. 1990; Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387
    [Google Scholar]
  14. Forward J. A., Behrendt, M. C., Wyborn, N. R., Cross R., Kelly D. J. 1997; TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse Gram-negative bacteria. J Bacteriol 179:5482–5493
    [Google Scholar]
  15. Grundy W. N., Bailey T. L., Elkan C. P., Baker M. E. 1997; Meta-meme: motif-based hidden Markov models of protein families. Comput Appl Biosci 13:397–406
    [Google Scholar]
  16. Hamblin M. J., Shaw J. G., Curson J. P., Kelly D. J. 1990; Mutagenesis, cloning and complementation analysis of C4-dicarboxylate transport genes from Rhodobacter capsulatus. Mol Microbiol 4:1567–1574 [CrossRef]
    [Google Scholar]
  17. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113 [CrossRef]
    [Google Scholar]
  18. Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D. R., Gallagher M. P. 1990; Binding protein- dependent transport systems. J Bioenerg Biomembr 22:571–592 [CrossRef]
    [Google Scholar]
  19. Huala E., Stigter J., Ausubel F. M. 1992; The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription. J Bacteriol 174:1428–1431
    [Google Scholar]
  20. Hyde S. C., Emsley P., Hartshorn M. J.7 other authors 1990; Structural model of ATP- binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365 [CrossRef]
    [Google Scholar]
  21. Jacobs M. H. J., van der Heide T., Driessen A. J. M., Konings W. N. 1996; Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Proc Natl Acad Sci USA 93:12786–12790 [CrossRef]
    [Google Scholar]
  22. Kemner J. M., Liang X., Nester E. W. 1997; The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC- type sugar transport operon. J Bacteriol 179:2452–2458
    [Google Scholar]
  23. Klenk H.-P., Clayton R. A., Tomb J.-F.48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370 [CrossRef]
    [Google Scholar]
  24. Kuan G., Dassa E., Saurin W., Hofnung M., Saier M. H. Jr 1995; Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 146:271–278 [CrossRef]
    [Google Scholar]
  25. Kuroda M., Dey S., Sanders O. I., Rosen B. P. 1997; Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem 272:326–331 [CrossRef]
    [Google Scholar]
  26. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  27. Le T., Tseng T.-T., Saier M. H. Jr 1999; Flexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Mol Membr Biol 16:173–179 [CrossRef]
    [Google Scholar]
  28. Maloney P. C. 1994; Bacterial transporters. Curr Opin Cell Biol 6:571–582 [CrossRef]
    [Google Scholar]
  29. Maloney P. C., Wilson T. H. 1996; Ion-coupled transport and transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1130–1148Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Nakatsu C. H., Korona R., Lenski R. E., DeBruijn F. J., Marsh T. L., Forney L. J. 1998; Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J Bacteriol 180:4325–4331
    [Google Scholar]
  31. Nikaido H., Saier M. H. Jr 1992; Transport proteins in bacteria: common themes in their design. Science 258:936–942 [CrossRef]
    [Google Scholar]
  32. Obis D., Guillot A., Gripon J.-C., Renault P., Bolotine A., Mistou M. Y. 1999; Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol (in press)
    [Google Scholar]
  33. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  34. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  35. Quiocho F. A., Ledvina P. S. 1996; Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25 [CrossRef]
    [Google Scholar]
  36. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  37. Saier M. H. Jr 1998; Molecular phylogeny as a basis for the classification of transport proteins from Bacteria, Archaea and Eukarya. Adv Microb Physiol 40:81–136
    [Google Scholar]
  38. Saier M. H. Jr 1999; Eukaryotic transmembrane solute transport systems. In International Review of Cytology: a Survey of Cell Biology pp. 61–136Edited by Jeon K. W. San Diego: Academic Press;
    [Google Scholar]
  39. Saier M. H. Jr, Tseng T.-T. 1999; Evolutionary origins of transmembrane transport systems. In Transport of Molecules Across Microbial MembranesSociety for General Microbiology Symposium 58 pp. 252–274 Cambridge: Cambridge University Press;
    [Google Scholar]
  40. Saurin W., Hofnung M., Dassa E. 1999; Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41 [CrossRef]
    [Google Scholar]
  41. Shaw J. G., Kelly D. J. 1991; Binding protein dependent transport of C4-dicarboxylates in Rhodobacter capsulatus. Arch Microbiol 155:466–472 [CrossRef]
    [Google Scholar]
  42. Shaw J. G., Hamblin M. J., Kelly D. J. 1991; Purification, characterization and nucleotide sequence of the periplasmic C4 -dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Mol Microbiol 5:3055–3062 [CrossRef]
    [Google Scholar]
  43. Silver S., Ji G., Bröer, S., Dey, S., Du D., Rosen B. P. 1993; Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8:637–642 [CrossRef]
    [Google Scholar]
  44. Tam R., Saier M. H. Jr 1993; Structural, functional, and evolutionary relationships among extracellular solute- binding receptors of bacteria. Microbiol Rev 57:320–346
    [Google Scholar]
  45. Thompson J. D., Gibson, T. J., Plewniak, F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  46. Tseng T.-T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H. Jr 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125
    [Google Scholar]
  47. Walmsley A. R., Shaw J. G., Kelly D. J. 1992; The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem 267:8064–8072
    [Google Scholar]
  48. Winans S. C. 1991; An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 5:2345–2350 [CrossRef]
    [Google Scholar]
  49. Young G. B., Jack D. L., Smith D. W., Saier M. H. Jr 1999; The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3431
Loading
/content/journal/micro/10.1099/00221287-145-12-3431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error