Analysis of genes involved in nitrate reduction in

The GenBank accession number for the sequence reported in this paper is AB017192.

Free

Abstract

We have conducted the genetic analysis of fermentative nitrate reduction in , a strict anaerobic bacterium. Nitrate reductase (NarA) was purified from the cytoplasmic fraction of the organism. Using a degenerate primer designed from its N- terminal amino acid sequence, a 95 kb fragment containing seven ORFs was cloned. The molecular mass and N-terminal amino acid sequence predicted from the nucleotide sequence of ORF 4 coincided with those determined for the purified NarA, indicating that ORF 4 corresponds to a gene. ORFs 5 and 6 encode a 154 kDa ferredoxin-like protein containing four iron–sulfur clusters and a 45 kDa protein homologous to NADH oxidase, respectively. Analyses involving primer extension and Northern blotting revealed that these three ORFs are transcribed as a polycistronic message. The ORF 5- and ORF 6-encoded proteins were shown by immunoblotting to be synthesized by cells grown in the presence of nitrate. Thus, these two proteins are likely to function as electron-transfer components in nitrate reduction in . The 95 kb fragment and a downstream region of 61 kb do not contain any genes involved in nitrate uptake or nitrite reduction. Instead, all 5 ORFs downstream of ORF 6 are homologous to genes reported for molybdopterin biosynthesis, unlike the genomic organization already determined for the respiratory and assimilatory nitrate-reduction systems. The evolutionary relationships between these two nitrate- reduction systems and the fermentative one based on the results of comparative genetic analysis are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3377
1999-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453377a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3377&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi- blast: a new generation of protein database search programs. . Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ba-Thein W., Lyristis M., Ohtani K., Nisbet I. T., Hayashi H., Rood J. I., Shimizu T. 1996; The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520
    [Google Scholar]
  4. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. 1995; Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173 [CrossRef]
    [Google Scholar]
  5. Blasco F., Dos Santos, J. P., Magalon, A., Frixon, C., Guigliarelli B., Santini C. L., Giordano G. 1998; NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–447 [CrossRef]
    [Google Scholar]
  6. Calmels S., Ohshima H., Henry Y., Bartsch H. 1996; Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines. Carcinogenesis 17:533–536 [CrossRef]
    [Google Scholar]
  7. Campbell W. H. 1996; Nitrate reductase biochemistry comes of age. Plant Physiol 111:355–361
    [Google Scholar]
  8. Campbell W. H., Kinghorn J. R. 1990; Functional domains of assimilatory nitrate reductases and nitrite reductases. . Trends Biochem Sci 15:315–319 [CrossRef]
    [Google Scholar]
  9. Crawford N. M. 1995; Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868 [CrossRef]
    [Google Scholar]
  10. Crawford N. M., Arst H. N. Jr 1993; The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146 [CrossRef]
    [Google Scholar]
  11. Cruz Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. 1995; Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J 14:5984–5994
    [Google Scholar]
  12. Eaves D. J., Palmer T., Boxer D. H. 1997; The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur J Biochem 246:690–697 [CrossRef]
    [Google Scholar]
  13. Gennis R. B., Stewart V. 1996; Respiration. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 217–261Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Hasan S. M., Hall J. B. 1975; The physiological function of nitrate reduction in Clostridium perfringens. J Gen Microbiol 87:120–128 [CrossRef]
    [Google Scholar]
  15. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. 1995; The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225 [CrossRef]
    [Google Scholar]
  16. Ishimoto M., Umeyama M., Chiba S. 1974; Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens. Z Allg Mikrobiol 14:115–121 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Lin J. T., Stewart V. 1998; Nitrate assimilation by bacteria. . Adv Microb Physiol 39:1–30
    [Google Scholar]
  19. Matsushita O., Yoshihara K., Katayama S.-I., Minami J., Okabe A. 1994; Purification and characterization of a Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J Bacteriol 176:149–156
    [Google Scholar]
  20. Matsushita O., Jung, C.-M., Katayama, S., Minami, J., Takahashi Y., Okabe A. 1999; Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol 181:923–933
    [Google Scholar]
  21. Messing J. 1983; New M13 vectors for cloning. Methods Enzymol 101:20–78
    [Google Scholar]
  22. Ogawa K., Akagawa E., Yamane K., Sun Z. W., LaCelle M., Zuber P., Nakano M. M. 1995; The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177:1409–1413
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  25. Seki S., Hagiwara M., Kudo K., Ishimoto M. 1979; Studies on nitrate reductase of Clostridium perfringens. II. Purification and some properties of ferredoxin. J Biochem 85:833–838
    [Google Scholar]
  26. Seki S., Hattori Y., Hasegawa T., Haraguchi H., Ishimoto M. 1987; Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor, and iron–sulfur cluster. J Biochem 101:503–509
    [Google Scholar]
  27. Seki S., Ikeda A., Ishimoto M. 1988; Rubredoxin as an intermediary electron carrier for nitrate reduction by NAD(P)H in Clostridium perfringens. J Biochem 103:583–584
    [Google Scholar]
  28. Seki Y., Seki S., Satoh M., Ikeda A., Ishimoto M. 1989; Rubredoxin from Clostridium perfringens: complete amino acid sequence and participation in nitrate reduction. J Biochem 106:336–341
    [Google Scholar]
  29. Seki-Chiba S., Ishimoto M. 1977; Studies on nitrate reductase of Clostridium perfringens. I. Purification, some properties, and effect of tungstate on its formation. J Biochem 82:1663–1671
    [Google Scholar]
  30. Sekiguchi S., Seki S., Ishimoto M. 1983; Purification and some properties of nitrite reductase from Clostridium perfringens. . J Biochem 94:1053–1059
    [Google Scholar]
  31. Soda S., Yamamoto A., Ito A., Murata R. 1968; On the maintenance of toxigenicity of seed cultures of Clostridium perfringens PB6K with special reference to alpha toxin. Jpn J Med Sci Biol 21:91–94 [CrossRef]
    [Google Scholar]
  32. Takahashi H., Taniguchi S., Egami F. 1963; Inorganic nitrogen compounds: distribution and metabolism. In Comparative Biochemistry pp. 91–202Edited by Florkin M., Mason H. S. New York: Academic Press;
    [Google Scholar]
  33. Vermeer I. T., Pachen D. M., Dallinga J. W., Kleinjans J. C., van Maanen J. M. S. 1998; Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ Health Perspect 106:459–463 [CrossRef]
    [Google Scholar]
  34. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  35. Zumft W. G. 1992; The denitrifying prokaryotes. In The Prokaryotes, 2nd edn. pp. 554–582Edited by Balows A.others Berlin: Springer-Verlag;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3377
Loading
/content/journal/micro/10.1099/00221287-145-12-3377
Loading

Data & Media loading...

Most cited Most Cited RSS feed