1887

Abstract

We have conducted the genetic analysis of fermentative nitrate reduction in , a strict anaerobic bacterium. Nitrate reductase (NarA) was purified from the cytoplasmic fraction of the organism. Using a degenerate primer designed from its N- terminal amino acid sequence, a 95 kb fragment containing seven ORFs was cloned. The molecular mass and N-terminal amino acid sequence predicted from the nucleotide sequence of ORF 4 coincided with those determined for the purified NarA, indicating that ORF 4 corresponds to a gene. ORFs 5 and 6 encode a 154 kDa ferredoxin-like protein containing four iron–sulfur clusters and a 45 kDa protein homologous to NADH oxidase, respectively. Analyses involving primer extension and Northern blotting revealed that these three ORFs are transcribed as a polycistronic message. The ORF 5- and ORF 6-encoded proteins were shown by immunoblotting to be synthesized by cells grown in the presence of nitrate. Thus, these two proteins are likely to function as electron-transfer components in nitrate reduction in . The 95 kb fragment and a downstream region of 61 kb do not contain any genes involved in nitrate uptake or nitrite reduction. Instead, all 5 ORFs downstream of ORF 6 are homologous to genes reported for molybdopterin biosynthesis, unlike the genomic organization already determined for the respiratory and assimilatory nitrate-reduction systems. The evolutionary relationships between these two nitrate- reduction systems and the fermentative one based on the results of comparative genetic analysis are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3377
1999-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453377a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3377&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi- blast: a new generation of protein database search programs. . Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ba-Thein W., Lyristis M., Ohtani K., Nisbet I. T., Hayashi H., Rood J. I., Shimizu T. 1996; The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520
    [Google Scholar]
  4. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. 1995; Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232:97–173 [CrossRef]
    [Google Scholar]
  5. Blasco F., Dos Santos, J. P., Magalon, A., Frixon, C., Guigliarelli B., Santini C. L., Giordano G. 1998; NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–447 [CrossRef]
    [Google Scholar]
  6. Calmels S., Ohshima H., Henry Y., Bartsch H. 1996; Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines. Carcinogenesis 17:533–536 [CrossRef]
    [Google Scholar]
  7. Campbell W. H. 1996; Nitrate reductase biochemistry comes of age. Plant Physiol 111:355–361
    [Google Scholar]
  8. Campbell W. H., Kinghorn J. R. 1990; Functional domains of assimilatory nitrate reductases and nitrite reductases. . Trends Biochem Sci 15:315–319 [CrossRef]
    [Google Scholar]
  9. Crawford N. M. 1995; Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868 [CrossRef]
    [Google Scholar]
  10. Crawford N. M., Arst H. N. Jr 1993; The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146 [CrossRef]
    [Google Scholar]
  11. Cruz Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. 1995; Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J 14:5984–5994
    [Google Scholar]
  12. Eaves D. J., Palmer T., Boxer D. H. 1997; The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur J Biochem 246:690–697 [CrossRef]
    [Google Scholar]
  13. Gennis R. B., Stewart V. 1996; Respiration. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 217–261Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Hasan S. M., Hall J. B. 1975; The physiological function of nitrate reduction in Clostridium perfringens. J Gen Microbiol 87:120–128 [CrossRef]
    [Google Scholar]
  15. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. 1995; The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225 [CrossRef]
    [Google Scholar]
  16. Ishimoto M., Umeyama M., Chiba S. 1974; Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens. Z Allg Mikrobiol 14:115–121 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Lin J. T., Stewart V. 1998; Nitrate assimilation by bacteria. . Adv Microb Physiol 39:1–30
    [Google Scholar]
  19. Matsushita O., Yoshihara K., Katayama S.-I., Minami J., Okabe A. 1994; Purification and characterization of a Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J Bacteriol 176:149–156
    [Google Scholar]
  20. Matsushita O., Jung, C.-M., Katayama, S., Minami, J., Takahashi Y., Okabe A. 1999; Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol 181:923–933
    [Google Scholar]
  21. Messing J. 1983; New M13 vectors for cloning. Methods Enzymol 101:20–78
    [Google Scholar]
  22. Ogawa K., Akagawa E., Yamane K., Sun Z. W., LaCelle M., Zuber P., Nakano M. M. 1995; The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177:1409–1413
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  25. Seki S., Hagiwara M., Kudo K., Ishimoto M. 1979; Studies on nitrate reductase of Clostridium perfringens. II. Purification and some properties of ferredoxin. J Biochem 85:833–838
    [Google Scholar]
  26. Seki S., Hattori Y., Hasegawa T., Haraguchi H., Ishimoto M. 1987; Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor, and iron–sulfur cluster. J Biochem 101:503–509
    [Google Scholar]
  27. Seki S., Ikeda A., Ishimoto M. 1988; Rubredoxin as an intermediary electron carrier for nitrate reduction by NAD(P)H in Clostridium perfringens. J Biochem 103:583–584
    [Google Scholar]
  28. Seki Y., Seki S., Satoh M., Ikeda A., Ishimoto M. 1989; Rubredoxin from Clostridium perfringens: complete amino acid sequence and participation in nitrate reduction. J Biochem 106:336–341
    [Google Scholar]
  29. Seki-Chiba S., Ishimoto M. 1977; Studies on nitrate reductase of Clostridium perfringens. I. Purification, some properties, and effect of tungstate on its formation. J Biochem 82:1663–1671
    [Google Scholar]
  30. Sekiguchi S., Seki S., Ishimoto M. 1983; Purification and some properties of nitrite reductase from Clostridium perfringens. . J Biochem 94:1053–1059
    [Google Scholar]
  31. Soda S., Yamamoto A., Ito A., Murata R. 1968; On the maintenance of toxigenicity of seed cultures of Clostridium perfringens PB6K with special reference to alpha toxin. Jpn J Med Sci Biol 21:91–94 [CrossRef]
    [Google Scholar]
  32. Takahashi H., Taniguchi S., Egami F. 1963; Inorganic nitrogen compounds: distribution and metabolism. In Comparative Biochemistry pp. 91–202Edited by Florkin M., Mason H. S. New York: Academic Press;
    [Google Scholar]
  33. Vermeer I. T., Pachen D. M., Dallinga J. W., Kleinjans J. C., van Maanen J. M. S. 1998; Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ Health Perspect 106:459–463 [CrossRef]
    [Google Scholar]
  34. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  35. Zumft W. G. 1992; The denitrifying prokaryotes. In The Prokaryotes, 2nd edn. pp. 554–582Edited by Balows A.others Berlin: Springer-Verlag;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3377
Loading
/content/journal/micro/10.1099/00221287-145-12-3377
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error