1887

Abstract

The genes encoding aspartate kinase (), homoserine dehydrogenase (), homoserine kinase () and threonine synthase () from the obligate methylotroph were cloned. In maxicells and directed synthesis of 51 and 48 kDa polypeptides, respectively. The , and genes and adjacent DNA areas were sequenced. Of the threonine biosynthesis genes, only and were tightly linked in the order -. The gene for thymidylate synthase () followed and the gene for aspartate aminotransferase () preceded . All four genes (---) were transcribed in the same direction. mRNA analysis indicated that - are apparently transcribed in one 75 kb transcript in . Promoter analysis showed the presence of a functional promoter between and . No functional promoter was found to be associated with the DNA stretch between and . The gene encoded an unusual type of homoserine kinase and was not linked to other threonine biosynthesis genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3273
1999-11-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453273a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3273&mimeType=html&fmt=ahah

References

  1. Baev M. V., Schklyar N. L., Chistoserdova L. V., Chistoserdov A. Y., Polanuer B. M., Tsygankov Y. D., Sterkin V. E.. 1992; Growth of the obligate methylotroph Methylobacillus flagellatus under stationary and non-stationary conditions during continuous cultivation. Biotechnol Bioeng39:688–695[CrossRef]
    [Google Scholar]
  2. Beckman D. L., Trawick D. R., Kranz R. G.. 1992; Bacterial cytochrome biogenesis. Genes Dev6:268–283[CrossRef]
    [Google Scholar]
  3. Belfort M., Maley G. F., Pedersen-Lane J., Maley F.. 1983; Primary structure of the Escherichia coli thyA gene and its thymidylate synthase product. Proc Natl Acad Sci USA80:4914–4918[CrossRef]
    [Google Scholar]
  4. Bondaryk R. P., Paulus H.. 1985; Cloning and structure of the gene for the subunits of aspartokinase-II from Bacillus subtilis. J Biol Chem260:585–591
    [Google Scholar]
  5. Chistoserdov A. Y., Tsygankov Y. D.. 1986; Broad host range vectors derived from an RSF1010::Tn1 plasmid. Plasmid16:128–135
    [Google Scholar]
  6. Chistoserdov A. Y., Eremashvili M. R., Mashko S. V., Lapidus A. L., Skvortzova M. A., Sterkin V. E., Strongin V. Y., Tsygankov Y. D.. 1987; Expression of alpha-F human interferon gene in obligate methylotroph Methylobacillus flagellatus and. Pseudomonas putida. Mol Genet Mikrobiol Virusol8:36–41 in Russian
    [Google Scholar]
  7. Cirillo J. D., Weisbrod T. R., Pascopella L., Bloom B. R., Jacobs W. R.. 1994; Isolation and characterization of the aspartokinase and aspartate semialdehyde dehydrogenase operon from mycobacteria. Mol Microbiol11:629–639[CrossRef]
    [Google Scholar]
  8. Clepet C., Borne F., Krishnapillai V., Baird C., Patte J. C., Cami B.. 1992; Isolation, organization and expression of the Pseudomonas aeruginosa threonine genes. Mol Microbiol6:3109–3119[CrossRef]
    [Google Scholar]
  9. Cohen G. N., Saint-Girons I.. 1987; Biosynthesis of threonine, lysine, and methionine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp.429–444Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E.. Washington, DC: American Society of Microbiology;
    [Google Scholar]
  10. Engel J., Chistoserdov A. Y., Tsygankov Y. D.. 1986; Konstruktion von Vektoren fur methylotrophe Bacterien auf der Basis des Plasmids RSF1010. Acta Biotechnol6:23–25[CrossRef]
    [Google Scholar]
  11. Felsenstein J.. 1989; phylip – phylogeny inference package (version 3.2). Cladistics5:164–166
    [Google Scholar]
  12. Fleischmann R. D., Adams M. D., White O..37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science269:496–512[CrossRef]
    [Google Scholar]
  13. Follettie M. T., Peoples O. P., Agoropoulou C., Sinskey A. J.. 1993; Gene structure and expression of the Corynebacterium flavum N-13 ask-asd operon. J Bacteriol175:4096–4103
    [Google Scholar]
  14. Gomelsky M., Gak E., Chistoserdov A., Bolotin A., Tsygankov Y. D.. 1990; Cloning, sequence and expression in Escherichia coli of the Methylobacillus flagellatus recA gene. Gene94:69–75[CrossRef]
    [Google Scholar]
  15. Govorukhina N. I., Kletsova L. V., Tsygankov Y. D., Trotsenko Y. A., Netrusov A. I.. 1987; Characteristics of a new obligate methylotroph. Microbiologiya56:673–677 in Russian
    [Google Scholar]
  16. Higgins D. G., Bleasy A. J., Fuchs R.. 1992; clustal v – improved software for multiple sequence alignment. Comput Appl Biosci8:189–191
    [Google Scholar]
  17. Jagusztyn-Krynicki E. K., Malashewska-Keough A.. 1989; Cloning and expression of Thiobacillus versutus aspartate-semialdehyde dehydrogenase gene in E. coli. FEMS Microbiol Lett59:21–26[CrossRef]
    [Google Scholar]
  18. Jetten M. S. M., Follettie M. T., Sinskey A. J.. 1995; Effect of different levels of aspartokinase on lysine production by Corynebacterium lactofermentum. . Appl Microbiol Biotechnol43:76–82[CrossRef]
    [Google Scholar]
  19. Kalinowski J., Cremer J., Bachmann B., Eggeling L., Sahm H., Puhler A.. 1991; Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol5:1197–1204[CrossRef]
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  21. Le Y., He J., Vining L. C.. 1996; Streptomyces akiyoshiensis differs from other Gram-positive bacteria in the organization of a core biosynthetic pathway gene for aspartate family amino acids. Microbiology142:791–798[CrossRef]
    [Google Scholar]
  22. Madsen S. M., Albrechtsen B., Hansen E. B., Israelsen H.. 1996; Cloning and transcriptional analysis of two threonine biosynthesis genes from Lactococcus lactis MG1614. J Bacteriol178:3689–3694
    [Google Scholar]
  23. Malumbres M., Mateos L. M., Lumbreras M. A., Guerrero C., Martin J. F.. 1994; Analysis and expression of the thrC gene of Brevibacterium lactofermentum and characterization of the encoded threonine synthase. Appl Environ Microbiol60:2209–2219
    [Google Scholar]
  24. Malumbres M., Mateos L. M., Guerrero L. M., Martin J. F.. 1995; Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1 – expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes. Folia Microbiol40:595–606[CrossRef]
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J.. 1982; Molecular Cloning: a Laboratory Manual Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Marchenko G. N., Tsygankov Y. D.. 1992; Genes for threonine biosynthesis in Methylobacillus flagellatus. InAbstracts of the 7th International Symposium on Microbial Growth on C1 CompoundsWarwick UK Abstract no B79
    [Google Scholar]
  27. Marchenko N. D., Marchenko G. N., Azizbekjan R. R.. 1994; Construction of the polyfunctional broad host range vectors. Expression of the Bacillus thuringiensis delta-endotoxin genes. Biotekhnologiya3:2–5 in Russian
    [Google Scholar]
  28. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  29. Mateos L. M., Delreal G., Aguilar A., Martin J. F.. 1987a; Cloning and expression in Escherichia coli of the homoserine kinase gene from Brevibacterium lactofermentum. . Mol Gen Genet206:361–367[CrossRef]
    [Google Scholar]
  30. Mateos L. M., Delreal G., Aguilar A., Martin J. F.. 1987b; Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of Brevibacterium lactofermentum. Nucleic Acid Res15:10598[CrossRef]
    [Google Scholar]
  31. Montorsi M., Lorenzetti R.. 1993; Heat-stable and heat-labile thymidylate synthase B of Bacillus subtilis – comparison of the nucleotide and amino acid sequences. Mol Gen Genet239:1–5
    [Google Scholar]
  32. Motoyama H., Maki K., Anazawa H., Ishino S., Teshiba S.. 1994; Cloning and nucleotide sequence of the homoserine dehydrogenase genes (hom) and the threonine synthase genes (thrC) of the Gram-negative obligate methylotroph Methylobacillus glycogenes. Appl Environ Microbiol60:111–119
    [Google Scholar]
  33. Nakayama K., Tanaka H., Ogino H., Kinoshita S.. 1966; Studies on lysine fermentation. V. Concerted feedback inhibition on aspartic semialdehyde – pyruvate condensation in M. glutamicus. Agric Biol Chem30:611–619[CrossRef]
    [Google Scholar]
  34. Nishiyama M., Kukimoto M., Beppu T., Horinouchi S.. 1995; An operon encoding aspartokinase and purine phosphoribosyltransferase in Thermus flavus. . Microbiology141:1211–1219[CrossRef]
    [Google Scholar]
  35. Omori K., Imai Y., Suzuki S., Komatsubara S.. 1993; Nucleotide sequence of the Serratia marcescens threonine operon and analysis of the threonine operon mutations which alter feedback inhibition of both aspartokinase-I and homoserine dehydrogenase-I. J Bacteriol175:785–794
    [Google Scholar]
  36. Parsot C.. 1986; Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and d-serine dehydratase. EMBO J5:3013–3019
    [Google Scholar]
  37. Parsot C., Cohen G. N.. 1988; Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase – structural and evolutionary relationships with Escherichia coli aspartokinases – homoserine dehydrogenase-I and dehydrogenase-II. J Biol Chem263:14654–14660
    [Google Scholar]
  38. Peoples O. P., Liebl W., Bodis M., Maeng P. J., Follettie M. T., Archer J. A., Sinskey A. J.. 1988; Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol2:63–72[CrossRef]
    [Google Scholar]
  39. Ruban E. L.. 1986; Amino acid biosynthesis in the Pseudomonas genus. In Physiology and Biochemistry of the Pseudomonas Genus pp.30–35Edited by Shapiro G.. Moscow: Nauka;
    [Google Scholar]
  40. Sancar A., Wharton R. P., Seltzer S., Kacinski B. M., Clarke N. D., Rupp W. D.. 1981; Identification of uvrA gene product. J Mol Biol148:45–62[CrossRef]
    [Google Scholar]
  41. Serebriiski I. G., Tsygankov Y. D.. 1995; Genetic study of biotin biosynthesis in the obligate methanol-oxidizing bacterium ‘Methylobacillus flagellatum’. Microbiology141:1723–1729[CrossRef]
    [Google Scholar]
  42. Shendel F. J., Flickinger M. C.. 1992; Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp. Appl Environ Microbiol58:2806–2814
    [Google Scholar]
  43. Shilova S. Y., Marchenko G. N., Chistoserdov A. Y., Tsygankov Y. D.. 1989; Threonine biosynthesis in Methylobacillus flagellatus regulation and gene cloning. InAbstracts of the 6th International Symposium on Microbial Growth on C1 CompoundsGottingen Germany Abstract no P447
    [Google Scholar]
  44. Sjoestedt A., Sandstroem G., Taernvik A., Jaurin B.. 1990; Nucleotide sequence and T-cell epitopes of a membrane protein of Francisella tularensis. . J Immunol145:311–317
    [Google Scholar]
  45. Stephan M., Datta P.. 1973; Concerted feedback inhibition. J Biol Chem248:8534–8540
    [Google Scholar]
  46. Sung M. H., Tanizawa K., Tanaka H., Kuramitsu S., Kagamiyama H., Hirotsu K., Okamoto A., Higuchi T., Soda K.. 1991; Thermostable aspartate-aminotransferase from a thermophilic Bacillus species – gene cloning, sequence determination, and preliminary X-ray characterization. J Biol Chem266:2567–2572
    [Google Scholar]
  47. Swofford D. L.. 1991; paup: Phylogenetic Analysis Using Parsimony, version 3.0. Computer program distributed by the Illinois Natural History Museum; Champaign, IL, USA:
    [Google Scholar]
  48. Tsygankov Y. D., Chistoserdov A. Y.. 1985; Specific-purpose broad-host-range vectors. Plasmid14:118–125[CrossRef]
    [Google Scholar]
  49. Tsygankov Y. D., Kazakova S. M., Serebrijski I. G.. 1990; Genetic mapping of the obligate methylotroph Methylobacillus flagellatus: characteristics of prime plasmids and mapping of the chromosome in time-of-entry units. J Bacteriol172:2747–2754
    [Google Scholar]
  50. Weisemann J. M., Matthews B. F.. 1993; Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Plant Mol Biol22:301–312[CrossRef]
    [Google Scholar]
  51. Yankovsky N. K., Fonstein M. Y., Lashina S. V., Bukanov N. O., Yakubovich N. V., Ermakova L. M., Rebentish B. A., Janulaitis A. A., Debabov V. G.. 1989; Phasmids as effective and simple tools for construction and analysis of gene libraries. Gene81:203–210[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3273
Loading
/content/journal/micro/10.1099/00221287-145-11-3273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error