1887

Abstract

Growth of sp. strain O-1 with 2-aminobenzenesulfonate (ABS; orthanilate) as sole source of carbon and energy requires expression of the soluble, multicomponent 2-aminobenzenesulfonate 2,3-dioxygenase system (deaminating) (ABSDOS) which is plasmid-encoded. ABSDOS was separated by anion-exchange chromatography to yield a flavin-dependent reductase component and an iron-dependent oxygenase component. The oxygenase component was purified to about 98% homogeneity and an αβ subunit structure was deduced from the molecular masses of 134, 45 and 16 kDa for the native complex, and the α and β subunits, respectively. Analysis of the amount of acid labile sulfur and total iron, and the UV spectrum of the purified oxygenase component indicated one [2Fe–2S] Rieske centre per α subunit. The inhibition of activity by the iron-specific chelator -phenanthroline indicated the presence of an additional iron-binding site. Recovery of active protein required strictly anoxic conditions during all purification steps. The FAD-containing reductase could not be purified. ABSDOS oxygenated nine sulfonated compounds; no oxygen uptake was detected with carboxylated aromatic compounds or with aliphatic sulfonated compounds. values of 29, 18 and 108 μM and values of 140, 110 and 72 pkat for ABS, benzenesulfonate and 4-toluenesulfonate, respectively, were observed. The N-terminal amino acid sequences of the α- and β-subunits of the oxygenase component allowed PCR primers to be deduced and the DNA sequence of the α-subunit was thereafter determined. Both redox centres were detected in the deduced amino acid sequence. Sequence data and biochemical properties of the enzyme system indicate a novel member of the class IB ring-hydroxylating dioxygenases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3255
1999-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453255a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3255&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Armengaud J., Happe B., Timmis K. N. 1998; Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J Bacteriol 180:3954–3966
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Batie C. J., Ballou D. P., Correll C. C. 1992; Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. In Chemistry and Biochemistry of Flavoenzymes pp. 543–556Edited by Müller F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  5. Beinert H. 1983; Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem 131:373–378 [CrossRef]
    [Google Scholar]
  6. Bernhardt F.-N., Erdin N., Staudinger H., Ullrich V. 1973; Interactions of substrates with a purified 4-methoxybenzoate monooxygenase system (O-demethylating) from Pseudomonas putida. Eur J Biochem 35:126–134 [CrossRef]
    [Google Scholar]
  7. Bertini I., Cremonini M. A., Ferretti S., Lozzi I., Luchinat C., Viezzoli M. A. 1996; Arene hydroxylases: metalloenzymes catalysing dioxygenation of aromatic compounds. Coord Chem Rev 151:145–160 [CrossRef]
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  9. Bundy B. M., Campbell A. L., Neidle E. 1998; Similarities between antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180:4466–4474
    [Google Scholar]
  10. Bünz P., Cook A. M. 1993; Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 175:6467–6475
    [Google Scholar]
  11. Busse H.-J., Auling G. 1992; The genera Alcaligenes and ‘Achromobacter’. In The Prokaryotes pp. 2544–2555Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  12. Busse H.-J., El-Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol 55:1578–1583
    [Google Scholar]
  13. Butler C. S., Mason J. R. 1997; Structure–function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84
    [Google Scholar]
  14. Cook A. M., Laue H., Junker F. 1998; Microbial desulfonation. FEMS Microbiol Rev 22:399–419 [CrossRef]
    [Google Scholar]
  15. Dehmel U., Engesser K.-H., Timmis K. N., Dwyer D. F. 1995; Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Arch Microbiol 163:35–41 [CrossRef]
    [Google Scholar]
  16. Haak B., Fetzner S., Lingens F. 1995; Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 177:667–675
    [Google Scholar]
  17. Harayama S., Rekik M., Bairoch A., Neidle E. L., Ornston L. N. 1991; Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ genes encoding benzoate dioxygenases. J Bacteriol 173:7540–7548
    [Google Scholar]
  18. Hayaishi O. 1974 Molecular Mechanisms of Oxygen Activation New York: Academic Press;
    [Google Scholar]
  19. Irie S., Doi S., Yorifuji T., Takagi M., Yano K. 1987; Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 169:5174–5179
    [Google Scholar]
  20. Jahnke M., El-Banna T., Klintworth R., Auling G. 1990; Mineralization of orthanilic acid is a plasmid-associated trait in Alcaligenes sp. O-1. J Gen Microbiol 136:2241–2249 [CrossRef]
    [Google Scholar]
  21. Jahnke M., Lehmann F., Schoebel A., Auling G. 1993; Transposition of the TOL catabolic genes (Tn4651) into the degradative plasmid pSAH of Alcaligenes sp. O-1 ensures simultaneous mineralization of sulpho- and methyl-substituted aromatics. J Gen Microbiol 139:1959–1966 [CrossRef]
    [Google Scholar]
  22. Junker F., Field J. A., Bangerter F., Ramsteiner K., Kohler H.-P., Joannou C. L., Mason J. R., Leisinger T., Cook A. M. 1994a; Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436
    [Google Scholar]
  23. Junker F., Leisinger T., Cook A. M. 1994b; 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1 . 13 . 11 . 2 and EC 1 . 14 . 12 . -) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140:1713–1722 [CrossRef]
    [Google Scholar]
  24. Junker F., Kiewitz R., Cook A. M. 1997; Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 179:919–927
    [Google Scholar]
  25. Kauppi B., Lee K., Carredano F., Parales R. E., Gibson D. T., Eklund H., Ramaswamy S. 1998; Structure of an aromatic-ring-hydroxylating dioxygenase – naphthalene 1,2-dioxygenase. Structure 6:571–586 [CrossRef]
    [Google Scholar]
  26. Kennedy S. I. T., Fewson C. A. 1968; Enzymes of the mandelate pathway in bacterium NCIB 8250. Biochem J 107:497–506
    [Google Scholar]
  27. Kurkela S., Lehvaslaiho H., Palva E. T., Teeri T. H. 1988; Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73:355–362 [CrossRef]
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  29. Laskin A. I., Lechevalier H. A. 1984 CRC Handbook of Microbiology Boca Raton FL: CRC Press;
    [Google Scholar]
  30. Laue H., Field J. A., Cook A. M. 1996; Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ Sci Technol 30:1129–1132 [CrossRef]
    [Google Scholar]
  31. Locher H. H., Leisinger T., Cook A. M. 1991; 4-Sulphobenzoate 3,4-dioxygenase: purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem J 274:833–842
    [Google Scholar]
  32. le Maire M., Ghasi A., Moller J. V. 1996; Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. ACS Symp Ser 635:36–51
    [Google Scholar]
  33. de Marco P., Moradas-Ferreira P., Higgins T. P., McDonald I., Kenna E. M., Murrell J. C. 1999; Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J Bacteriol 181:2244–2251
    [Google Scholar]
  34. Nakatsu C. H., Straus N. A., Wyndham R. C. 1995; The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495 [CrossRef]
    [Google Scholar]
  35. Neidle E. L., Hartnett C., Ornston L. N., Bairoch A., Rekik M., Harayama S. 1991; Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol 173:5385–5395
    [Google Scholar]
  36. Nomura Y., Nakagawa M., Ogawa N., Harashima S., Oshima Y. 1992; Genes in PHT encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferment Bioeng 74:333–344 [CrossRef]
    [Google Scholar]
  37. Rosche B., Tshisuaka B., Fetzner S., Lingens F. 1995; 2-Oxo-1,2-dihydroquinoline-8-monooxygenase, a two-component enzyme system from Pseudomonas putida 86. J Biol Chem 270:17836–17842 [CrossRef]
    [Google Scholar]
  38. Schläfli H. R., Weiss M. A., Leisinger T., Cook A. M. 1994; Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652
    [Google Scholar]
  39. Simon M. J., Osslund T. D., Saunders R.7 other authors 1993; Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37 [CrossRef]
    [Google Scholar]
  40. Suen W. C., Haigler B. E., Spain J. C. 1996; 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol 178:4926–4934
    [Google Scholar]
  41. Taira K., Hirose J., Hayashida S., Furukawa K. 1992; Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267:4844–4853
    [Google Scholar]
  42. Thurnheer T., Köhler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220
    [Google Scholar]
  43. Thurnheer T., Zürrer D., Höglinger O., Leisinger T., Cook A. M. 1990; Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acid and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1:55–64 [CrossRef]
    [Google Scholar]
  44. Venturi V., Zennaro F., Degrassi G., Okeke B. C., Bruschi C. V. 1998; Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 144:965–973 [CrossRef]
    [Google Scholar]
  45. Whitman C. P., Aird B. A., Gillespie W. R., Stolowich N. J. 1991; Chemical and enzymatic ketonization of 2-hydroxymuconate, a conjugated enol. J Am Chem Soc 113:3154–3162 [CrossRef]
    [Google Scholar]
  46. Yamaguchi M., Fujisawa H. 1982; Subunit structure of oxygenase component in benzoate-1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem 257:12497–12502
    [Google Scholar]
  47. Zylstra G. J., Gibson D. T. 1989; Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3255
Loading
/content/journal/micro/10.1099/00221287-145-11-3255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error