1887

Abstract

Osmotolerance in yeast is regulated by at least two distinct mechanisms. The acquired response occurs following long-term exposure to hypertonic medium and requires the induction of the HOG-MAP (high-osmolarity glycerol mitogen-activated protein) kinase cascade to increase levels of the osmolyte glycerol. The acute response occurs following sudden exposure to high osmotica and appears to be dependent on normal vacuole function. In this study it is reported that the yeast endosomal/prevacuolar Na/H exchanger Nhx1 contributes to osmotolerance following sudden exposure to hyperosmotic media. Vacuolar shrinkage and recovery in response to osmotic shock was altered in the Δ null mutant. Our results also show that the osmotolerance conferred by Nhx1 contributes to the postdiauxic/stationary-phase resistance to osmotic stress and allows for the continued growth of cells until the acquired osmotolerance response can occur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3221
1999-11-01
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453221a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3221&mimeType=html&fmt=ahah

References

  1. Albertyn J., Hohmann S., Prior B. A.. 1994a; Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr Genet25:12–18[CrossRef]
    [Google Scholar]
  2. Albertyn J., Hohmann S., Thevelein J. M., Prior B.. 1994b; GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol Cell Biol14:4135–4144
    [Google Scholar]
  3. Andre L., Hemming A., Adler L.. 1991; Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Lett286:13–17[CrossRef]
    [Google Scholar]
  4. Banta L. M., Robinson J. S., Daniel J. K., Emr S. D.. 1988; Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol107:1369–1383[CrossRef]
    [Google Scholar]
  5. Barkla B. J., Blumwald E.. 1992; Salt tolerance in higher plants – the role of the vacuolar Na+/H+ antiport. In Research in Photosynthesis pp.219–226Edited by Murata N.. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  6. Blomberg A., Adler L.. 1989; Roles of glycerol and glycerol 3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. . J Bacteriol171:1087–1092
    [Google Scholar]
  7. Blomberg A., Adler L.. 1992; Physiology of osmotolerance in fungi. Adv Microbiol Physiol33:145–212
    [Google Scholar]
  8. Blomberg A., Larsson C., Gustafsson L.. 1988; Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state. J Bacteriol170:4562–4568
    [Google Scholar]
  9. Blumwald E., Poole R. J.. 1987; Salt tolerance in suspension cultures of sugar beet. Plant Physiol83:884–887[CrossRef]
    [Google Scholar]
  10. Boller T., Wiemken A.. 1986; Dynamics of vacuolar compartmentation. Annu Rev Plant Physiol37:137–164[CrossRef]
    [Google Scholar]
  11. Bookstein C., Musch M. W., Depaoli A., Xie Y., Villereal M., Rao M. C., Chang E. B.. 1994; A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem269:29704–29709
    [Google Scholar]
  12. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C.. 1993; An osmosensing signal transduction pathway in yeast. Science259:1760–1763[CrossRef]
    [Google Scholar]
  13. Brown A. D., Mackenzie K. F., Singh K. K.. 1986; Selected aspects of microbial osmoregulation. FEMS Microbiol Rev39:31–36[CrossRef]
    [Google Scholar]
  14. Bryant N. J., Stevens T. H.. 1998; Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev62:230–247
    [Google Scholar]
  15. Chowdhury S., Smith K. W., Gustin M. C.. 1992; Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol118:561–571[CrossRef]
    [Google Scholar]
  16. Crowe J. H., Crowe L. M., Chapman D.. 1984; Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science223:701–703[CrossRef]
    [Google Scholar]
  17. Donowitz M., Levine S. A., Yun C. H. C., Brant S. R., Nath S., Yip J., Hoogerwerf S., Pouyssegur J., Tse C. M.. 1996; Molecular studies of members of the mammalian Na+/H+ exchanger gene family. In Molecular Biology of Membrane Transport Disorders pp.259–275Edited by Schultz S. G.. New York: Plenum;
    [Google Scholar]
  18. Elliott B., Futcher B.. 1993; Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast9:33–42[CrossRef]
    [Google Scholar]
  19. Flowers T. J., Hajibagheri M. A., Clipson N. J. W.. 1986; Halophytes. Q Rev Biol61:313–337[CrossRef]
    [Google Scholar]
  20. Fraenkel D. G.. 1982; Carbohydrate metabolism. In The Molecular Biology of the Yeast Saccharomyces; Metabolism and Gene Expression pp.1–37Edited by Strathern J. N., Jones E. W., Browach J. R.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Garbarino J., DuPont F. M.. 1988; NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. Plant Physiol86:231–236[CrossRef]
    [Google Scholar]
  22. Gaxiola R. A., Rao R., Sherman A., Grisafi P., Alper S. L., Fink G. R.. 1999; The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA96:1480–1485[CrossRef]
    [Google Scholar]
  23. Grinstein S., Rothstein A., Cohen S.. 1985; Mechanism of osmotic activation of Na+/H+ exchange in rat thymic lymphocytes. J Gen Physiol85:765–787[CrossRef]
    [Google Scholar]
  24. Grinstein S., Rotin D., Marson M. J.. 1989; Na+/H+ exchanger and growth factor-induced cytosolic pH change. Role in cellular proliferation. Biochim Biophys Acta988:73–97[CrossRef]
    [Google Scholar]
  25. Grinstein S., Woodside M., Sardet C., Pouyssegur J., Rotin D.. 1992; Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J Biol Chem267:23823–23828
    [Google Scholar]
  26. Gustin M. C., Zhou X. L., Martinac B., Kung C.. 1988; A mechanosensitive ion channel in the yeast plasma membrane. Science242:762–776[CrossRef]
    [Google Scholar]
  27. Hoffmann E. K., Simonsen L. O.. 1989; Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev69:315–382
    [Google Scholar]
  28. Hottiger T., Boller T., Wiemken A.. 1987; Rapid changes of heat and dessication tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett220:113–115[CrossRef]
    [Google Scholar]
  29. Kapus A., Grinstein S., Wasan S., Kandasamy R., Orlowsky J.. 1994; Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem269:23544–23552
    [Google Scholar]
  30. Klionsky D. J., Herman P. K., Emr S. D.. 1990; The fungal vacuole: composition, function, and biogenesis. Microbiol Rev54:266–292
    [Google Scholar]
  31. Latterich M., Watson M. D.. 1991; Isolation and characterization of osmosensitive vacuolar mutants of Saccharomyces cerevisiae. . Mol Microbiol5:2417–2426[CrossRef]
    [Google Scholar]
  32. Latterich M., Watson M. D.. 1993; Evidence for a dual osmoregulatory mechanism in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun191:1111–1117[CrossRef]
    [Google Scholar]
  33. Mackenzie K. F., Blomberg A., Brown A. D.. 1986; Water stress plating hypersensitivity of yeast: protective role of trehalose in Saccharomyces cerevisiae. . J Gen Microbiol12:2053–2056
    [Google Scholar]
  34. Mager W. H., Varela J. C. S.. 1993; Osmostress response of the yeast Saccharomyces. . Mol Microbiol10:253–258[CrossRef]
    [Google Scholar]
  35. Matile P.. 1978; Biochemistry and function of vacuoles. Annu Rev Plant Physiol29:193–213[CrossRef]
    [Google Scholar]
  36. Morris G. J., Winters L., Coulson G. E., Clarke K. J.. 1986; Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. . J Gen Microbiol132:2023–2034
    [Google Scholar]
  37. Nass R., Rao R.. 1998; Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem273:21054–21060[CrossRef]
    [Google Scholar]
  38. Nass R., Cunningham K. W., Rao R.. 1997; Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. J Biol Chem272:26145–26152[CrossRef]
    [Google Scholar]
  39. Nath S. K., Hang C. Y., Levine S. A., Yun C. H. C., Montrose M. H., Donowitz M., Tse C. M.. 1996; Hyperosmolarity inhibits the Na+/H+ exchanger isoforms NHE2 and NHE3: an effect opposite to that on NHE1. Am J Physiol270:G431–G441
    [Google Scholar]
  40. Niedermeyer W., Parish G. R., Moor H.. 1977; Reactions of yeast cells to glycerol treatment. Alterations to membrane structure and glycerol uptake. Protoplasma92:177–193[CrossRef]
    [Google Scholar]
  41. Rios G., Ferrando A., Serrano R.. 1997; Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. . Yeast13:515–528[CrossRef]
    [Google Scholar]
  42. Schenberg-Frascino A., Moustacchi E.. 1972; Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. Mol Gen Genet115:243–257
    [Google Scholar]
  43. Serrano R.. 1996; Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol165:1–52
    [Google Scholar]
  44. Soleimani M. G., Singh J. H., Dominguez J. H., Howard R. L.. 1995; Long-term high osmolality activates Na+-H+ exchange and protein kinase C in aortic smooth muscle cells. Circ Res76:530–535[CrossRef]
    [Google Scholar]
  45. Vida T. A., Emr S. D.. 1995; A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol128:779–792[CrossRef]
    [Google Scholar]
  46. Wakabayashi S., Shigekawa M., Pouyssegur J.. 1997; Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev77:51–74
    [Google Scholar]
  47. Werner-Washburne M., Braun E., Johnston G. C.. 1993; Stationary phase in the yeast Saccharomyces cerevisiae. . Microbiol Rev57:383–401
    [Google Scholar]
  48. Zimmermann U.. 1978; Physics of turboregulation and osmoregulation. Annu Rev Plant Physiol29:121–148[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3221
Loading
/content/journal/micro/10.1099/00221287-145-11-3221
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error