1887

Abstract

Crh of exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS). Crh can be phosphorylated by ATP at the regulatory Ser-46 and similar to P-Ser-HPr, P-Ser-Crh plays a role in carbon-catabolite repression. The sequence around the phosphorylatable Ser-46 in Crh exhibits strong similarity to the corresponding sequence of HPr of Gram-positive and a few Gram-negative bacteria. In contrast, the catalytic His-15, the site of PEP-dependent phosphorylation in HPr, is replaced with a glutamine in Crh. When Gln-15 was exchanged for a histidyl residue, PEP-dependent enzyme I-catalysed phosphorylation of the mutant Crh was observed. However, expression of the mutant allele did not restore growth of a deletion strain on the PTS sugars glucose, fructose or mannitol or on the non-PTS sugar glycerol. In contrast, Q15H mutant Crh could phosphorylate the transcriptional activator LevR as well as LevD, the enzyme IIA of the fructose-specific lev-PTS, which together with enzyme I, HPr and LevE forms the phosphorylation cascade regulating induction of the operon via LevR. As a consequence, the constitutive expression from the promoter observed in a Δ strain became inducible with fructose when the allele was expressed in this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3195
1999-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453195a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3195&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  2. Arantes, O. & Lereclus, D. ( 1991; ). Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115-119.[CrossRef]
    [Google Scholar]
  3. Charrier, V., Deutscher, J., Galinier, A. & Martin-Verstraete, I. ( 1997a; ). Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Biochemistry 36, 1163-1172.[CrossRef]
    [Google Scholar]
  4. Charrier, V., Buckley, E., Parsonage, D., Galinier, A., Darbon, E., Jaquinod, M., Forest, E., Deutscher, J. & Claiborne, A. ( 1997b; ). Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 272, 14166-14174.[CrossRef]
    [Google Scholar]
  5. Cortay, J. C., Nègre, D., Scarabel, M., Ramseier, T., Vartak, N. B., Reizer, J., Saier, M. H.Jr & Cozzone, A. J. ( 1994; ). In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J Biol Chem 269, 14885-14891.
    [Google Scholar]
  6. Deutscher, J. & Saier, M. H.Jr ( 1983; ). ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci USA 80, 6790-6794.[CrossRef]
    [Google Scholar]
  7. Deutscher, J., Bauer, B. & Sauerwald, H. ( 1993; ). Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by Enzyme I and HPr of the phosphotransferase system. J Bacteriol 175, 3730-3733.
    [Google Scholar]
  8. Deutscher, J., Küster, E., Bergstedt, U., Charrier, V. & Hillen, W. ( 1995; ). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon-catabolite repression in Gram-positive bacteria. Mol Microbiol 15, 1049-1053.[CrossRef]
    [Google Scholar]
  9. Du, Y., Holtel, A., Reizer, J. & Saier, M. H.Jr ( 1996; ). Sigma54-dependent transcription of the Pseudomonas putida xylS operon is influenced by the IIANtr protein of the phosphotransferase system in Escherichia coli. Res Microbiol 147, 129-132.[CrossRef]
    [Google Scholar]
  10. Fujita, Y., Miwa, Y., Galinier, A. & Deutscher, J. ( 1995; ). Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17, 953-960.[CrossRef]
    [Google Scholar]
  11. Galinier, A., Haiech, J., Kilhoffer, M.-C., Jaquinod, M., Stülke, J., Deutscher, J. & Martin-Verstraete, I. ( 1997; ). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon-catabolite repression. Proc Natl Acad Sci USA 94, 8439-8444.[CrossRef]
    [Google Scholar]
  12. Galinier, A., Kravanja, M., Engelmann, R., Hengstenberg, W., Kilhoffer, M.-C., Deutscher, J. & Haiech, J. ( 1998; ). New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95, 1823-1828.[CrossRef]
    [Google Scholar]
  13. Galinier, A., Deutscher, J. & Martin-Verstraete, I. ( 1999; ). Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 286, 307-314.[CrossRef]
    [Google Scholar]
  14. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543-548.
    [Google Scholar]
  15. Gay, P. & Delobbe, A. ( 1973; ). Fructose transport in Bacillus subtilis. Eur J Biochem 79, 363-373.
    [Google Scholar]
  16. Geerse, R. H., Izzo, F. & Postma, P. W. ( 1989; ). The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet 216, 517-525.[CrossRef]
    [Google Scholar]
  17. Gonzy-Tréboul, G., de Waard, J. H., Zagorec, M. & Postma, P. W. ( 1991; ). The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol 5, 1241-1249.[CrossRef]
    [Google Scholar]
  18. Gösseringer, R., Küster, E., Galinier, A., Deutscher, J. & Hillen, W. ( 1997; ). Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266, 665-676.[CrossRef]
    [Google Scholar]
  19. Henkin, T. M., Grundy, F. J., Nicholson, W. L. & Chambliss, G. H. ( 1991; ). Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a transacting gene product homologous to the Escherichia coli lacI and galR repressors. Mol Microbiol 5, 575-584.[CrossRef]
    [Google Scholar]
  20. Hueck, C. J., Hillen, W. & Saier, M. H.Jr ( 1994; ). Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145, 503-518.[CrossRef]
    [Google Scholar]
  21. Ireton, K., Rudner, D. Z., Siranosian, K. J. & Grossman, A. D. ( 1993; ). Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7, 283-294.[CrossRef]
    [Google Scholar]
  22. Jones, D. H. A., Franklin, C. H. & Thomas, C. M. ( 1994; ). Molecular analysis of the operon which encodes the RNA polymerase sigma factor σ54 of Escherichia coli. Microbiology 140, 1035-1043.[CrossRef]
    [Google Scholar]
  23. Kim, J. H., Voskuil, M. I. & Chambliss, G. H. ( 1998; ). NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci USA 95, 9590-9595.[CrossRef]
    [Google Scholar]
  24. Kravanja, M., Engelmann, R., Dossonnet, V., Blüggel, M., Meyer, H. E., Frank, R., Galinier, A., Deutscher, J. & Hengstenberg, W. ( 1999; ). The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31, 59-66.[CrossRef]
    [Google Scholar]
  25. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403-2407.
    [Google Scholar]
  26. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  27. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  28. Martin-Verstraete, I., Débarbouillé, M., Klier, A. & Rapoport, G. ( 1990; ). Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214, 657-671.[CrossRef]
    [Google Scholar]
  29. Martin-Verstraete, I., Stülke, J., Klier, A. & Rapoport, G. ( 1995; ). Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177, 6919-6927.
    [Google Scholar]
  30. Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G. & Deutscher, J. ( 1998; ). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28, 293-303.[CrossRef]
    [Google Scholar]
  31. Martin-Verstraete, I., Deutscher, J. & Galinier, A. ( 1999; ). Phosphorylation of HPr and Crh, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181, 2966-2969.
    [Google Scholar]
  32. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  34. Powell, B. S., Court, D. L., Inada, T., Nakamura, Y., Michotey, V., Cui, X., Reizer, A., Saier, M. H.Jr & Reizer, J. ( 1995; ). Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli: enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an era ts mutant. J Biol Chem 270, 4822-4839.[CrossRef]
    [Google Scholar]
  35. Reizer, J., Novotny, M. J., Stuiver, I. & Saier, M. H.Jr ( 1984; ). Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. J Bacteriol 159, 243-250.
    [Google Scholar]
  36. Reizer, J., Reizer, A. & Saier, M. H.Jr ( 1992a; ). A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1, 722-726.[CrossRef]
    [Google Scholar]
  37. Reizer, J., Sutrina, S. L., Wu, L.-F., Deutscher, J., Reddy, P. & Saier, M. H.Jr ( 1992b; ). Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis and Escherichia coli. J Biol Chem 267, 9158-9169.
    [Google Scholar]
  38. Reizer, J., Reizer, A. & Saier, M. H.Jr ( 1996; ). Novel PTS proteins revealed by bacterial genome sequencing: a unique fructose-specific phosphoryl transfer protein with two HPr-like domains in Haemophilus influenzae. Res Microbiol 147, 209-215.[CrossRef]
    [Google Scholar]
  39. Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamata, D., Saier, M. H.Jr & Hillen, W. ( 1998; ). A novel protein kinase that controls carbon-catabolite repression in bacteria. Mol Microbiol 27, 1157-1169.[CrossRef]
    [Google Scholar]
  40. Romano, A. H., Saier, M. H.Jr, Harriott, O. T. & Reizer, J. ( 1990; ). Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis. J Bacteriol 172, 6741-6748.
    [Google Scholar]
  41. Roossien, F. F., Brink, J. & Robillard, G. T. ( 1983; ). A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium. Biochim Biophys Acta 760, 185-187.[CrossRef]
    [Google Scholar]
  42. Saier, M. H.Jr & Reizer, J. ( 1992; ). Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 174, 1433-1438.
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964-969.[CrossRef]
    [Google Scholar]
  45. Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J. & Rapoport, G. ( 1995; ). The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177, 6928-6936.
    [Google Scholar]
  46. Stülke, J., Arnaud, M., Rapoport, G. & Martin-Verstraete, I. ( 1998; ). PRD – a protein domain involved in PTS-dependent induction and carbon-catabolite repression of catabolic operons in bacteria. Mol Microbiol 28, 865-874.[CrossRef]
    [Google Scholar]
  47. Tortosa, P., Aymerich, S., Lindner, C., Saier, M. H.Jr, Reizer, J. & Le Coq, D. ( 1997; ). Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272, 17230-17237.[CrossRef]
    [Google Scholar]
  48. Turinsky, A. J., Grundy, F. J., Kim, J. H., Chambliss, G. H. & Henkin, T. M. ( 1998; ). Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J Bacteriol 180, 5961-5967.
    [Google Scholar]
  49. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097-3104.[CrossRef]
    [Google Scholar]
  50. Waygood, E. B., Mattoo, R. L. & Peri, K. G. ( 1984; ). Phosphoproteins and the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIIMannose, IIIFructose, IIIGlucitol, and the phosphorylation of enzyme IIMannitol and enzyme II N-acetylglucosamine. J Cell Biochem 25, 139-159.[CrossRef]
    [Google Scholar]
  51. Zalieckas, J. M., Wray, L. V. & Fisher, S. H. ( 1998; ). Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon-catabolite repression. J Bacteriol 180, 6649-6654.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3195
Loading
/content/journal/micro/10.1099/00221287-145-11-3195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error