1887

Abstract

Low-temperature adaptation and cryoprotection were studied in the lactic acid bacterium MG1363. An approximately 100-fold increased survival after freezing was observed when cells were shocked to 10 °C for 4 h compared to mid-exponential-phase cells grown at 30 °C, indicating an active protection against freezing. Using two-dimensional gel electrophoresis a group of 7 kDa cold-induced proteins (CSPs) was identified that corresponds to a previously described family of genes of MG1363 (Wouters , 1998 , 144, 2885–2893). The 7 kDa CSPs appeared to be the most strongly induced proteins upon cold shock to 10 °C. Northern blotting and two-dimensional gel electrophoresis showed that the genes were maximally expressed at 10 °C, while induction was lower at 20 and 4 °C. However, pre-incubation at 20 and 4 °C, as well as stationary-phase conditions, also induced cryoprotection (approx. 30-, 130- and 20-fold, respectively, compared to 30 °C mid-exponential phase). For all treatments leading to an increased freeze survival (exposure to 4, 10 and 20 °C and stationary-phase conditions), increased levels of three proteins (26, 43 and 45 kDa) were observed for which a role in cryoprotection might be suggested. Increased freeze survival coincides with increased CSP expression, except for stationary-phase conditions. However, the level of observed freeze protection does not directly correlate with the gene expression levels. In addition, for the first time specific overproduction of a CSP in relation to freeze survival was studied. This revealed that cells overproducing CspD at 30 °C show a 2–10-fold increased survival after freezing compared to control cells. This indicates that the 7 kDa cold-shock protein CspD may enhance the survival capacity after freezing but that other factors supply additional cryoprotection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3185
1999-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453185a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3185&mimeType=html&fmt=ahah

References

  1. Becker, L. A., Sevket Cetin, M., Hutkins, R. W. & Benson, A. K. ( 1998; ). Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180, 4547-4554.
    [Google Scholar]
  2. Blum, H., Beier, H. & Gross, H. J. ( 1987; ). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99.[CrossRef]
    [Google Scholar]
  3. El-kest, S. E. & Marth, E. H. ( 1992; ). Freezing of Listeria monocytogenes and other microorganisms: a review. J Food Protein 55, 639-648.
    [Google Scholar]
  4. Etchegaray, J.-P. & Inouye, M. ( 1999; ). CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181, 1827-1830.
    [Google Scholar]
  5. Franks, F. ( 1995; ). Protein destabilization at low temperatures. Adv Protein Chem 46, 105-139.
    [Google Scholar]
  6. Gansel, X., Hartke, A., Boutibonnes, P. & Auffray, Y. ( 1993; ). Nucleotide sequence of the Lactococcus lactis NCDO763 (ML3) rpoD gene. Biochim Biophys Acta 1216, 115-118.[CrossRef]
    [Google Scholar]
  7. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1-9.
    [Google Scholar]
  8. Goldstein, J., Politt, N. S. & Inouye, M. ( 1990; ). Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87, 283-287.[CrossRef]
    [Google Scholar]
  9. Graumann, P. & Marahiel, M. A. ( 1996; ). Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166, 293-300.[CrossRef]
    [Google Scholar]
  10. Graumann, P., Schröder, K., Schmid, R. & Marahiel, M. A. ( 1996; ). Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178, 4611-4619.
    [Google Scholar]
  11. Graumann, P., Wendrich, T. M., Weber, M. H. W., Schröder, K. & Marahiel, M. A. ( 1997; ). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25, 741-756.[CrossRef]
    [Google Scholar]
  12. Hartke, A., Bouche, S., Gansel, X., Boutibonnes, P. & Auffray, Y. ( 1994; ). Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60, 3474-3478.
    [Google Scholar]
  13. Hecker, M., Schumann, W. & Völker, U. ( 1996; ). Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19, 417-428.[CrossRef]
    [Google Scholar]
  14. Jiang, W., Hou, Y. & Inouye, M. ( 1997; ). CspA, the major cold-shock protein of Escherichia coli, is an mRNA chaperone. J Biol Chem 272, 196-202.[CrossRef]
    [Google Scholar]
  15. Jones, P. G. & Inouye, M. ( 1994; ). The cold-shock response – a hot topic. Mol Microbiol 11, 811-818.[CrossRef]
    [Google Scholar]
  16. Jones, P. G., Krah, R., Tafuri, S. R. & Wolffe, A. P. ( 1992; ). DNA gyrase, CS7·4, and the cold shock response in Escherichia coli. J Bacteriol 174, 5798-5802.
    [Google Scholar]
  17. Kim, W. S. & Dunn, N. W. ( 1997; ). Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol 35, 59-63.[CrossRef]
    [Google Scholar]
  18. Kolter, R., Stiegele, D. A. & Tormo, A. ( 1993; ). The stationary phase of the bacterial life-cycle. Annu Rev Microbiol 47, 855-874.[CrossRef]
    [Google Scholar]
  19. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. ( 1993; ). Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281-291.[CrossRef]
    [Google Scholar]
  20. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299-27304.[CrossRef]
    [Google Scholar]
  21. LaTeana, A., Brandi, A., Falconi, M., Spurio, R., Pon, C. L. & Gualerzi, C. O. ( 1991; ). Identification of a cold shock transcriptional enhancer of the Escherichia coli major cold shock gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 88, 10907-10911.[CrossRef]
    [Google Scholar]
  22. Lee, S. J., Xie, A., Jiang, W., Etchegaray, J., Jones, P. G. & Inouye, M. ( 1994; ). Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11, 833-839.[CrossRef]
    [Google Scholar]
  23. Nakashima, K., Kanamaru, K., Mizuno, T. & Horikoshi, K. ( 1996; ). A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178, 2994-2997.
    [Google Scholar]
  24. O’Farrell, P. H. ( 1975; ). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007-4021.
    [Google Scholar]
  25. Panoff, J.-M., Thammavongs, B., Laplace, J.-M., Hartke, A., Boutibonnes, P. & Auffray, Y. ( 1995; ). Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology 32, 516-520.[CrossRef]
    [Google Scholar]
  26. Rallu, F., Gruss, A. & Maguin, E. ( 1996; ). Lactococcus lactis and stress. Antonie Leeuwenhoek 70, 243-251.[CrossRef]
    [Google Scholar]
  27. van Rooijen, R. J. & de Vos, W. M. ( 1990; ). Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem 265, 18499-18503.
    [Google Scholar]
  28. de Ruyter, P. G. G. A., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662-3667.
    [Google Scholar]
  29. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-379.[CrossRef]
    [Google Scholar]
  30. Thammavongs, B., Corroler, D., Panoff, J.-M., Auffray, Y. & Boutibonnes, P. ( 1996; ). Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challenge. Lett Appl Microbiol 23, 398-402.[CrossRef]
    [Google Scholar]
  31. Willimsky, G., Bang, H., Fischer, G. & Marahiel, M. A. ( 1992; ). Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174, 6326-6335.
    [Google Scholar]
  32. Wouters, J. A., Sanders, J.-W., Kok, J., de Vos, W. M., Kuipers, O. P. & Abee, T. ( 1998; ). Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144, 2885-2893.[CrossRef]
    [Google Scholar]
  33. Yamanaka, K. & Inouye, M. ( 1997; ). Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol 179, 5126-5130.
    [Google Scholar]
  34. Yamanaka, K., Fang, L. & Inouye, M. ( 1998; ). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27, 247-255.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3185
Loading
/content/journal/micro/10.1099/00221287-145-11-3185
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error