1887

Abstract

The rational use of IS fingerprinting for studies of the molecular epidemiology and evolution of requires understanding of the dynamics of transposition. In laboratory model systems, it has been shown that transposition is context-sensitive, i.e. it is influenced by the nature of the site in which the insertion sequence is presented. Stimulation of transposition by activation of an adjacent promoter supports the hypothesis that transposition occurs more readily from transcriptionally active locations. In addition, it has been shown that transposition can be enhanced by the expression of the transposase . These findings imply that the frequency of transposition will vary substantially between different strains of , and furthermore that a hitherto stable strain may develop more rapid variation due to transposition into an active site. The use of IS fingerprinting for the analysis of longer-range relationships between isolates therefore needs to be interpreted with care.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3169
1999-11-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453169a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3169&mimeType=html&fmt=ahah

References

  1. Dale J. W.. 1995; Mobile genetic elements in mycobacteria. Eur Respir J8:suppl. 20633S–648S
    [Google Scholar]
  2. Dale J. W., Tang T. H., Wall S., Zainuddin Z. F., Plikaytis B.. 1998; Conservation of IS6110 sequence in strains of Mycobacterium tuberculosis with single and multiple copies. Tuber Lung Dis78:225–227
    [Google Scholar]
  3. Dellagostin O. A., Wall S., Norman E., O’Shaughnessy T., Dale J. W., McFadden J.. 1993; Construction and use of integrative vectors to express foreign genes in mycobacteria. Mol Microbiol10:983–993[CrossRef]
    [Google Scholar]
  4. Fomukong N. G., Dale J. W.. 1993; Transpositional activity of IS986 in Mycobacterium smegmatis. Gene130:99–105[CrossRef]
    [Google Scholar]
  5. Fomukong N. G., Dale J. W., Osborn T. W., Grange J. M.. 1992; Use of gene probes based on the insertion sequence IS986 to differentiate between BCG vaccine strains. J Appl Bacteriol72:126–133[CrossRef]
    [Google Scholar]
  6. Fomukong N. G., Tang T. H., Al-Maamary S., Ibrahim W. A., Ramayah S., Yates M., Zainuddin Z. F., Dale J. W.. 1994; Insertion sequence typing of Mycobacterium tuberculosis: characterization of a widespread sub-type with a single copy of IS6110. . Tuber Lung Dis75:435–440[CrossRef]
    [Google Scholar]
  7. Ghanekar K., McBride A., Dellagostin O. A., Mooney R., McFadden J.. 1999; Stimulation of transposition of the Mycobacterium tuberculosis insertion sequence IS6110 by exposure to a microaerobic environment. Mol Microbiol33:982–993[CrossRef]
    [Google Scholar]
  8. Guilhot C., Gicquel B., Martı́n, C.. 1992; Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett98:181–186[CrossRef]
    [Google Scholar]
  9. Hermans P. W. M., van Soolingen D., Dale J. W., Schuitema A. R. J., McAdam R. A., Catty D., van Embden J. D. A.. 1990; Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. J Clin Microbiol28:2051–2058
    [Google Scholar]
  10. Hermans P. W. M., van Soolingen D., Bik E. M., De Haas P. E. W., Dale J. W., van Embden J. D. A.. 1991; Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun59:2695–2705
    [Google Scholar]
  11. McAdam R. A., Hermans P. W. M., van Soolingen D., Zainuddin Z. F., Catty D., van Embden J. D. A., Dale J. W.. 1990; Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol Microbiol4:1607–1613[CrossRef]
    [Google Scholar]
  12. Radford A. J., Hodgson A. L. M.. 1991; Construction and characterization of a Mycobacterium–Escherichia coli shuttle vector. Plasmid25:149–153[CrossRef]
    [Google Scholar]
  13. Snapper S. B., Melton R. E., Kieser T., Mustafa S., Jacobs W. R.. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. . Mol Microbiol4:1911–1919[CrossRef]
    [Google Scholar]
  14. van Soolingen D., Hermans P. W. M., De Haas P. E. W., Soll D. R., van Embden J. D. A.. 1991; Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol29:2578–2586
    [Google Scholar]
  15. Thierry D., Cave M. D., Eisenach K. D., Crawford J. T., Bates J. H., Gicquel B., Guesdon J. L.. 1990; IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res18:188[CrossRef]
    [Google Scholar]
  16. Wards B. J., Collins D. M.. 1996; Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett145:101–105[CrossRef]
    [Google Scholar]
  17. Yeh R. W., De Leon P., Agasino C. B., Hahn J. A., Daley C. L., Hopewell P. C., Small P. M.. 1998; Stability of Mycobacterium tuberculosis DNA genotypes. J Infect Dis177:1107–1111[CrossRef]
    [Google Scholar]
  18. Zainuddin Z. F., Dale J. W.. 1989; Polymorphic repetitive DNA sequences in Mycobacterium tuberculosis detected with a gene probe from a Mycobacterium fortuitum plasmid. J Gen Microbiol135:2347–2355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3169
Loading
/content/journal/micro/10.1099/00221287-145-11-3169
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error