1887

Abstract

PlcR is a pleiotropic regulator of extracellular virulence factors in the opportunistic human pathogen and the entomopathogenic , and is induced in cells entering stationary phase. Among the genes regulated by PlcR are: , encoding phosphatidylinositol-specific phospholipase C (PI-PLC); , encoding phosphatidylcholine-preferring phospholipase C (PC-PLC); , encoding the non-haemolytic enterotoxin; , encoding haemolytic enterotoxin BL (HBL); and genes specifying a putativeS-layer like surface protein and a putative extracellular RNase. By analysing 371 kb of DNA sequence surrounding , and , 28 ORFs were predicted. Three novel genes putatively regulated by PlcR and encoding a neutral protease (NprB), a subtilase family serine protease (Sfp) and a putative cell-wall hydrolase (Cwh) were identified. The corresponding and genes were located in the immediate upstream region of and could both be regulated by a putative PlcR-binding site positioned between the inversely transcribed genes. Similarly, was positioned directly upstream and transcribed in the opposite orientation to . Genes surrounding , and that were lacking an upstream PlcR regulatory sequence did not appear to serve functions apparently related to PlcR and did not exhibit a conserved organization in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3129
1999-11-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453129a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3129&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Økstad, O. A., Kolstø, A.-B., Lereclus D. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Bangham J. A. 1988; Data-sieving hydrophobicity plots. Anal Biochem 174:142–145 [CrossRef]
    [Google Scholar]
  5. Beecher D. J., Macmillan J. D. 1991; Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59:1778–1784
    [Google Scholar]
  6. Brendel V., Trifonov E. N. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12:4411–4427 [CrossRef]
    [Google Scholar]
  7. Carlson C. R., Johansen T., Kolstø A.-B. 1996; The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167 [CrossRef]
    [Google Scholar]
  8. Chandry P. S., Moore M. C., Boyce J. D., Davidson B. E., Hillier A. J. 1997; Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol 26:49–64 [CrossRef]
    [Google Scholar]
  9. Chuang S.-E., Chen A.-L., Chao C.-C. 1995; Growth of E. coli at low temperature dramatically increases the transformation frequency by electroporation. Nucleic Acids Res 23:1641 [CrossRef]
    [Google Scholar]
  10. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane α-helices in prokaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng 10:673–676 [CrossRef]
    [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  12. Dodd I. B., Egan J. B. 1987; Systematic method for the detection of potential λ cro-like DNA-binding regions in proteins. J Mol Biol 194:557–564 [CrossRef]
    [Google Scholar]
  13. Dodd I. B., Egan J. B. 1990; Improved detection of helix–turn–helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026 [CrossRef]
    [Google Scholar]
  14. Drobniewski F. A. 1993; Bacillus cereus and related species. Clin Microbiol Rev 6:324–338
    [Google Scholar]
  15. Dunn M. G., Ellar D. J. 1997; Identification of two sequence elements associated with the gene encoding the 24-kDa crystalline component in Bacillus thuringiensis ssp. fukuokaensis: an example of transposable element archeology. Plasmid 37:205–215 [CrossRef]
    [Google Scholar]
  16. Etienne-Toumelin I., Sirard J.-C., Duflot E., Mock M., Fouet A. 1994; Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177:614–620
    [Google Scholar]
  17. Feng D. F., Doolittle R. F. 1987; Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360 [CrossRef]
    [Google Scholar]
  18. Granum P. E., Lund T. 1997; Bacillus cereus enterotoxins. FEMS Microbiol Lett 157:223–228 [CrossRef]
    [Google Scholar]
  19. Gribskov M., McLachlan A. D., Eisenberg D. 1987; Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 84:4355–4358 [CrossRef]
    [Google Scholar]
  20. von Heijne G. 1992; Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494 [CrossRef]
    [Google Scholar]
  21. Heinrichs J. H., Beecher D. J., Macmillan J. D., Zilinskas B. A. 1993; Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J Bacteriol 175:6760–6766
    [Google Scholar]
  22. Henner D. J., Yang M., Chen E., Hellmiss R., Rodriguez H., Low M. G. 1988; Sequence of the Bacillus thuringiensis phosphatidylinositol specific phospholipase C. Nucleic Acids Res 16:10383 [CrossRef]
    [Google Scholar]
  23. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5:151–153
    [Google Scholar]
  24. Johansen T., Holm T., Guddal P. H., Sletten K., Haugli F. B., Little E. C. 1988; Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene 65:293–304 [CrossRef]
    [Google Scholar]
  25. Kobayashi K., Shoji K., Shimizu T., Nakano K., Sato T., Kobayashi Y. 1995; Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J Bacteriol 177:176–182
    [Google Scholar]
  26. Kolstø, A.-B., Grønstad A., Oppegaard H. 1990; Physical map of the Bacillus cereus chromosome.. J Bacteriol 172:3821–3825
    [Google Scholar]
  27. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  28. Kuppe A., Evans L. M., McMillen D. A., Griffith O. H. 1989; Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171:6077–6083
    [Google Scholar]
  29. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  30. Lechner M., Kupke T., Stefanovic S., Gotz F. 1989; Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Mol Microbiol 3:621–626 [CrossRef]
    [Google Scholar]
  31. LeDeaux J. R., Grossman A. D. 1995; Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177:166–175
    [Google Scholar]
  32. Lereclus D., Agaisse H., Gominet M., Salamitou S., Sanchis V. 1996; Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 178:2749–2756
    [Google Scholar]
  33. Lindbäck T., Økstad, O. A., Rishovd A.-L., Kolstø, A.-B. 1999; Insertional inactivation of hblC encoding the L2 component of the Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145:3139–3146
    [Google Scholar]
  34. Lövgren, A., Carlson C. R., Eskils K., Kolstø, A. B. 1998; Localization of putative virulence genes on a physical map of the Bacillus thuringiensis subsp. gelechiae chromosome. Curr Microbiol 37:245–250 [CrossRef]
    [Google Scholar]
  35. Lupas A. 1996; Prediction and analysis of coiled-coil structures. Methods Enzymol 266:513–525
    [Google Scholar]
  36. Lupas A., van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science 252:1162–1164 [CrossRef]
    [Google Scholar]
  37. Lüthy R., Xenarios I., Bucher P. 1994; Improving the sensitivity of the sequence profile method. Protein Sci 3:139–146
    [Google Scholar]
  38. Maizel J. V. Jr, Lenk R. P. 1981; Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci USA 78:7665–7669 [CrossRef]
    [Google Scholar]
  39. Marchuk D., Drumm M., Saulino A., Collins F. S. 1990; Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154
    [Google Scholar]
  40. Moriyama R., Kudoh S., Miyata S., Nonobe S., Hattori A., Makino S. 1996; A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores: cloning and sequencing of the gene and molecular characterization of the enzyme. J Bacteriol 178:5330–5332
    [Google Scholar]
  41. Nambu J. R., Lewis J. O., Wharton K. A. Jr, Crews S. T. 1991; The Drosophila single-minded gene encodes a helix–loop–helix protein that acts as a master regulator of CNS midline development. . Cell 67:1157–1167 [CrossRef]
    [Google Scholar]
  42. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453 [CrossRef]
    [Google Scholar]
  43. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  44. Økstad, O. A., Grønstad A., Lindbäck T., Kolstø A.-B. 1997; Insertional inactivation of a Tet(K)/Tet(L) like transporter does not eliminate tetracycline resistance in Bacillus cereus. FEMS Microbiol Lett 154:181–186 [CrossRef]
    [Google Scholar]
  45. Økstad, O. A., Hegna I., Lindbäck T., Rishovd A.-L., Kolstø A.-B. 1999; Genome organisation is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology 145:621–631 [CrossRef]
    [Google Scholar]
  46. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  47. Ponting C. P., Aravind L. 1997; PAS: a multifunctional domain family comes to light. Curr Biol 7:R674–R677 [CrossRef]
    [Google Scholar]
  48. Ryan P. A., Macmillan J. D., Zilinskas B. A. 1997; Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179:2551–2556
    [Google Scholar]
  49. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  50. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  51. Thompson J. D., Higgins D. G., Gibson T. 1994; Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10:19–29
    [Google Scholar]
  52. Trach K. A., Hoch J. A. 1993; Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol 8:69–79 [CrossRef]
    [Google Scholar]
  53. Turnbull P. C. 1981; Bacillus cereus toxins. Pharmacol Ther 13:453–505 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-145-11-3129
Loading
/content/journal/micro/10.1099/00221287-145-11-3129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error