1887

Abstract

Each of the genes in the -type cytochrome biogenesis gene cluster , plus the two flanking genes ORF117 and , were individually disrupted by Ω insertion. Resultant phenotypes were restored to the wild-type by complementation from a set of plasmids. All of the genes, but neither ORF117 nor , were required for -type cytochrome biogenesis; only was also implicated in the biosynthesis of cytochrome . Disruption of or resulted in failure to grow on rich media, but disruption of , or did not. The mutant, but not the , or mutants, also exhibited the increased sensitivity to growth inhibition by oxidized thiol compounds previously observed for the mutant. In contrast to the mutant, however, growth of the mutant on rich media could not be restored by DTT. Siderophore biosynthesis and/or secretion by was also attenuated by disruption of and but not of , or . These results indicate that CcmC can function independently of CcmA, CcmB and CcmD despite other evidence that these gene products form an ATP-binding cassette (ABC)-type-transporter with the subunit composition (CcmA)-CcmB-CcmC or (CcmA)-CcmB-CcmC-CcmD, and also suggest a possible link between the functions of CcmC and CcmG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3047
1999-11-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453047a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3047&mimeType=html&fmt=ahah

References

  1. Alefounder P. R., Ferguson S. J. 1981; A periplasmic location for methanol dehydrogenase from Paracoccus denitrificans: implications for proton pumping by cytochrome aa3. Biochem Biophys Res Commun 98:778–784 [CrossRef]
    [Google Scholar]
  2. Bagdasarian M., Lürz R., Rückert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number RSF1010-derived vectors, and a host–vector system for gene cloning in Pseudomonas. Gene 16:237–247 [CrossRef]
    [Google Scholar]
  3. Baker S. C., Ferguson S. J., Ludwig B., Page M. D., Richter O. M., van Spanning R. J. M. 1998; Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078
    [Google Scholar]
  4. Beckman D. L., Kranz R. G. 1993; Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci USA 90:2179–2183 [CrossRef]
    [Google Scholar]
  5. Beckman D. L., Trawick D. R., Kranz R. G. 1992; Bacterial cytochrome c biogenesis. Genes Dev 6:268–283 [CrossRef]
    [Google Scholar]
  6. Burnell J. N., John P., Whatley F. R. 1975; The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans. Biochem J 150:527–536
    [Google Scholar]
  7. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning systems for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351 [CrossRef]
    [Google Scholar]
  8. Gaballa A., Koedam N., Cornelis P. 1996; A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol 21:777–785 [CrossRef]
    [Google Scholar]
  9. Gaballa A., Baysse C., Koedam N., Muyldermans S., Cornelis P. 1998; Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol 30:547–555 [CrossRef]
    [Google Scholar]
  10. Goldman B. S., Beckman D. L., Bali A., Monika E. M., Gabbert K. K., Kranz R. G. 1997; Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 268:724–738 [CrossRef]
    [Google Scholar]
  11. Harms N., van Spanning R. 1991; C1 metabolism in Paracoccus denitrificans. J Bioenerg Biomembr 23:187–210 [CrossRef]
    [Google Scholar]
  12. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113 [CrossRef]
    [Google Scholar]
  13. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range vectors for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  14. Keilin D. 1966 The History of Cell Respiration and CytochromeEdited by Keilin J . Cambridge: Cambridge University Press;
    [Google Scholar]
  15. Kranz R. G., Beckman D. L. 1995; Cytochrome biogenesis. In Anoxygenic photosynthetic bacteria pp. 709–723Edited by Blankenship R. E., Madigan M. T., Bauer C. E. Amsterdam: Kluwer;
    [Google Scholar]
  16. Kranz R., Lill R., Goldman B., Bonnard G., Merchant S. 1998; Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29:383–396 [CrossRef]
    [Google Scholar]
  17. Marrs B., Gest H. 1973; Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 114:1045–1051
    [Google Scholar]
  18. Oozeer F., Page M. D., Ferguson S. J., Goodwin P. M. 1993; Phenotypic characterization of c-type-cytochrome-deficient mutants of Methylobacterium extorquens AM1 and identification of two chromosomal regions essential for the production of c-type cytochromes. J Gen Microbiol 139:11–19 [CrossRef]
    [Google Scholar]
  19. Page M. D., Ferguson S. J. 1995; Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c1. Mol Microbiol 15:307–318 [CrossRef]
    [Google Scholar]
  20. Page M. D., Ferguson S. J. 1997; Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo. Mol Microbiol 24:977–990 [CrossRef]
    [Google Scholar]
  21. Page M. D., Pearce D. A., Norris H. A. C., Ferguson S. J. 1997; The Paracoccus denitrificans ccmA, B and C genes: cloning and sequencing, and analysis of the potential of their products to form a haem or apo- c-type cytochrome transporter. Microbiology 143:563–576 [CrossRef]
    [Google Scholar]
  22. Page M. D., Sambongi Y., Ferguson S. J. 1998; Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem Sci 267:103–108
    [Google Scholar]
  23. Parke D. 1990; Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene 93:135–137 [CrossRef]
    [Google Scholar]
  24. Pearce D. A., Page M. D., Norris H. A. C., Tomlinson E. J., Ferguson S. J. 1998; Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. Microbiology 144:467–477 [CrossRef]
    [Google Scholar]
  25. Prentki K., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schulz H., Hennecke H., Thöny-Meyer L. 1998; Prototype of a heme chaperone essential for cytochrome c maturation. Science 281:1197–1200 [CrossRef]
    [Google Scholar]
  28. Schulz H., Fabianek R. A., Pellicoli E. C., Hennecke H., Thöny-Meyer L. 1999; Haem transfer to the haem chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA 96:6462–6467 [CrossRef]
    [Google Scholar]
  29. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  30. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:37–45
    [Google Scholar]
  31. Tait G. H. 1975; The identification and biosynthesis of siderophores formed by Micrococcus denitrificans. Biochem J 146:191–204
    [Google Scholar]
  32. Thöny-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  33. Throne-Holst M., Thöny-Meyer L., Hederstedt L. 1997; Escherichia coli ccm in-frame deletion mutants can produce periplasmic cytochrome b but not cytochrome c. FEBS Lett 410:351–355 [CrossRef]
    [Google Scholar]
  34. de Vries G. E., Harms N., Hoogedijk J. J., Stouthamer A. H. 1989; Isolation and characterisation of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch Microbiol 152:52–57 [CrossRef]
    [Google Scholar]
  35. Willison J. C., John P. 1979; Mutants of Paracoccus denitrificans deficient in c-type cytochromes. J Gen Microbiol 115:443–450 [CrossRef]
    [Google Scholar]
  36. Xie Z., Merchant S. 1998; A novel pathway for cytochromes c biogenesis in chloroplasts. Biochim Biophys Acta 1365:309–318 [CrossRef]
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-145-11-3047
Loading
/content/journal/micro/10.1099/00221287-145-11-3047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error