1887

Abstract

strains express a diverse range of lipopolysaccharide (LPS) structures that have been classified into 12 immunotypes. A feature of meningococcal LPS is the reversible, high-frequency switching of expression (phase variation) of terminal LPS structures. A number of studies are strongly suggestive of a key role for these terminal structures, and their phase-variable expression, in pathogenesis. In a previous study, a locus of three LPS biosynthetic genes, , involved in the biosynthesis of one of these terminal structures, lacto--neotetraose, was described. The molecular mechanism of phase-variable expression of this structure is by high-frequency mutation in a homopolymeric tract of G residues in the gene. To investigate the genetic basis of the structural differences between the immunotypes, and the potential for strains to express alternative immunotypes, this locus was examined in all of the immunotype strains. Initially, the locus of strain 126E, an L1 immunotype strain, was cloned and sequenced, revealing two active genes, and . The remnants of the and genes and an inactive gene were also present, indicating that the locus may have once contained five active genes, similar to a locus previously reported in strain F62. Probes based on each of the genes (), and the recently reported gene, were used to determine the presence or absence of genes within individual strains, allowing the prediction of the phase variation repertoire of these strains. Sequencing to determine the nature of homopolymeric tract regions within the genes was carried out to establish the potential for LPS switching. In general, the set of strains examined could be sorted into two distinct groups: one group which phase-vary the α-chain extension via or but cannot make β-chain; the second group phase-vary the β-chain extension via but do not vary α-chain (lacto--neotetraose).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3013
1999-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453013a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3013&mimeType=html&fmt=ahah

References

  1. Alexander H. E. 1965; The Haemophilus group. In Bacterial and Mycotic Infections of Man pp. 724–741Edited by Dabos R. J., Hirsch J. G. London: Pitman Medical Publishing;
    [Google Scholar]
  2. Banerjee A., Wang R., Uljon S. N., Rice P. A., Gotschlich E. C., Stein D. C. 1998; Identification of the gene (lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc Natl Acad Sci USA 95:10872–10877 [CrossRef]
    [Google Scholar]
  3. Danaher R. J., Levin J. C., Arking D., Burch C. L., Sandlin R., Stein D. C. 1995; Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J Bacteriol 177:7275–7279
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  5. Gamian A., Beurret M., Michon F., Brisson J. R., Jennings H. J. 1992; Structure of the L2 lipopolysaccharide core oligosaccharides of Neisseria meningitidis. J Biol Chem 267:922–925
    [Google Scholar]
  6. Gotschlich E. C. 1994; Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J Exp Med 180:2181–2190 [CrossRef]
    [Google Scholar]
  7. Jennings M. P., van der Ley P., Wilks K. E., Maskell D. J., Poolman J. T., Moxon E. R. 1993; Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol Microbiol 10:361–369 [CrossRef]
    [Google Scholar]
  8. Jennings M. P., Hood D., Peak I. R. A., Virji V., Moxon E. R. 1995; Molecular analysis of a locus which controls the biosynthesis and phase variable expression of the lacto-N-neotetraose terminal LPS structure in Neisseria meningitidis. Mol Microbiol 18:724–740
    [Google Scholar]
  9. Kahler C. M., Stephens D. S. 1998; Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide. Crit Rev Microbiol 24:281–334
    [Google Scholar]
  10. Kogan G., Uhrin D., Brisson J. R., Jennings H. J. 1997; Structural basis of the Neisseria meningitidis immunotypes including the L4 and L7 immunotypes. Carbohydr Res 298:191–199 [CrossRef]
    [Google Scholar]
  11. Mackinnon F. G., Borrow R., Gorringe A. R., Fox A. J., Jones D. M., Robinson A. 1993; Demonstration of lipooligosaccharide immunotype and capsule as virulence factors for Neisseria meningitidis using an infant mouse intranasal infection model. Microb Pathog 15:359–366 [CrossRef]
    [Google Scholar]
  12. Moran E. E., Brandt B. L., Zollinger W. D. 1994; Expression of the L8 lipopolysaccharide determinant increases the sensitivity of Neisseria meningitidis to serum bactericidal activity. Infect Immun 62:5290–5295
    [Google Scholar]
  13. Rahman M. M., Stephens D. S., Kahler C. M., Glushka J., Carlson R. W. 1998; The lipooligosaccharide (LOS) of Neisseria meningitidis serogroup B strain NMB contains L2, L3, and novel oligosaccharides, and lacks the lipid-A 4′-phosphate substituent. Carbohydr Res 307:311–324 [CrossRef]
    [Google Scholar]
  14. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  15. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Scholten R. J. P. M., Kuipers B., Valkenberg H. A., Dankert J., Zollinger W. D., Poolman J. T. 1994; Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA using monoclonal antibodies and association of immunotype with serogroup, serotype and subtype. J Med Microbiol 41:236–243 [CrossRef]
    [Google Scholar]
  17. Verheul A. F. M., Snippe H., Poolman J. T. 1993; Meningococcal lipopolysaccharides: virulence factor and potential vaccine component. Microbiol Rev 57:34–49
    [Google Scholar]
  18. Virji M., Peak I. R. A., Makepeace K., Jennings M. P., Ferguson D. J. P., Moxon E. R. 1995; Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18:741–754 [CrossRef]
    [Google Scholar]
  19. Wakarchuk W., Martin A., Jennings M. P., Moxon E. R., Richards J. C. 1996; Functional relationships of the gene locus encoding the glycosyltransferase enzymes involved in the expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. J Biol Chem 271:19166–19173 [CrossRef]
    [Google Scholar]
  20. Yang Q. L., Gotschlich E. C. 1996; Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J Exp Med 183:323–327 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3013
Loading
/content/journal/micro/10.1099/00221287-145-11-3013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error